Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Database (Oxford) ; 20242024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865431

RESUMO

Molecular identification of micro- and macroorganisms based on nuclear markers has revolutionized our understanding of their taxonomy, phylogeny and ecology. Today, research on the diversity of eukaryotes in global ecosystems heavily relies on nuclear ribosomal RNA (rRNA) markers. Here, we present the research community-curated reference database EUKARYOME for nuclear ribosomal 18S rRNA, internal transcribed spacer (ITS) and 28S rRNA markers for all eukaryotes, including metazoans (animals), protists, fungi and plants. It is particularly useful for the identification of arbuscular mycorrhizal fungi as it bridges the four commonly used molecular markers-ITS1, ITS2, 18S V4-V5 and 28S D1-D2 subregions. The key benefits of this database over other annotated reference sequence databases are that it is not restricted to certain taxonomic groups and it includes all rRNA markers. EUKARYOME also offers a number of reference long-read sequences that are derived from (meta)genomic and (meta)barcoding-a unique feature that can be used for taxonomic identification and chimera control of third-generation, long-read, high-throughput sequencing data. Taxonomic assignments of rRNA genes in the database are verified based on phylogenetic approaches. The reference datasets are available in multiple formats from the project homepage, http://www.eukaryome.org.


Assuntos
Eucariotos , Eucariotos/genética , RNA Ribossômico 18S/genética , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Animais , Genes de RNAr/genética , Filogenia
2.
Eur J Protistol ; 94: 126090, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795654

RESUMO

Predatory protists play a central role in nutrient cycling and are involved in other ecosystem functions by predating the microbiome. While most soil predatory protist species arguably are bacterivorous, some protist species can prey on eukaryotes. However, studies about soil protist feeding mainly focused on bacteria as prey and rarely tested both bacteria and eukaryotes as potential prey. In this study, we aimed to decipher soil predator-prey interactions of three amoebozoan and three heterolobosean soil protists and potential bacterial (Escherichia coli; 0.5-1.5 µm), fungal (Saccharomyces cerevisiae; 5-7 µm) and protist (Plasmodiophora brassicae; 3-5 µm) prey, either as individual prey or in all their combinations. We related protist performance (relative abundance) and prey consumption (qPCR) to the protist phylogenetic group and volume. We showed that for the six soil protist predators, the most suitable prey was E. coli, but some species also grew on P. brassicae or S. cerevisiae. While protist relative abundances and growth rates depended on prey type in a protist species-specific manner, phylogenetic groups and volume affected prey consumption. Yet we conclude that protist feeding patterns are mainly species-specific and that some known bacterivores might be more generalist than expected, even preying on eukaryotic plant pathogens such as P. brassicae.


Assuntos
Solo , Especificidade da Espécie , Solo/parasitologia , Solo/química , Escherichia coli/fisiologia , Comportamento Predatório/fisiologia , Cadeia Alimentar , Microbiologia do Solo , Saccharomyces cerevisiae/fisiologia , Eucariotos/fisiologia , Eucariotos/classificação , Filogenia
4.
Environ Microbiol ; 25(11): 2057-2067, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37438930

RESUMO

Microbiome predators shape the soil microbiome and thereby soil functions. However, this knowledge has been obtained from small-scale observations in fundamental rather than applied settings and has focused on a few species under ambient conditions. Therefore, there are several unaddressed questions on soil microbiome predators: (1) What is the role of microbiome predators in soil functioning? (2) How does global change affect microbiome predators and their functions? (3) How can microbiome predators be applied in agriculture? We show that there is sufficient evidence for the vital role of microbiome predators in soils and stress that global changes impact their functions, something that urgently needs to be addressed to better understand soil functioning as a whole. We are convinced that there is a potential for the application of microbiome predators in agricultural settings, as they may help to sustainably increase plant growth. Therefore, we plea for more applied research on microbiome predators.


Assuntos
Microbiota , Solo , Agricultura , Microbiologia do Solo
5.
Mol Plant Pathol ; 24(2): 89-106, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448235

RESUMO

BACKGROUND: Plasmodiophora brassicae is the causal agent of clubroot disease of cruciferous plants and one of the biggest threats to the rapeseed (Brassica napus) and brassica vegetable industry worldwide. DISEASE SYMPTOMS: In the advanced stages of clubroot disease wilting, stunting, yellowing, and redness are visible in the shoots. However, the typical symptoms of the disease are the presence of club-shaped galls in the roots of susceptible hosts that block the absorption of water and nutrients. HOST RANGE: Members of the family Brassicaceae are the primary host of the pathogen, although some members of the family, such as Bunias orientalis, Coronopus squamatus, and Raphanus sativus, have been identified as being consistently resistant to P. brassicae isolates with variable virulence profile. TAXONOMY: Class: Phytomyxea; Order: Plasmodiophorales; Family: Plasmodiophoraceae; Genus: Plasmodiophora; Species: Plasmodiophora brassicae (Woronin, 1877). DISTRIBUTION: Clubroot disease is spread worldwide, with reports from all continents except Antarctica. To date, clubroot disease has been reported in more than 80 countries. PATHOTYPING: Based on its virulence on different hosts, P. brassicae is classified into pathotypes or races. Five main pathotyping systems have been developed to understand the relationship between P. brassicae and its hosts. Nowadays, the Canadian clubroot differential is extensively used in Canada and has so far identified 36 different pathotypes based on the response of a set of 13 hosts. EFFECTORS AND RESISTANCE: After the identification and characterization of the clubroot pathogen SABATH-type methyltransferase PbBSMT, several other effectors have been characterized. However, no avirulence gene is known, hindering the functional characterization of the five intercellular nucleotide-binding (NB) site leucine-rich-repeat (LRR) receptors (NLRs) clubroot resistance genes validated to date. IMPORTANT LINK: Canola Council of Canada is constantly updating information about clubroot and P. brassicae as part of their Canola Encyclopedia: https://www.canolacouncil.org/canola-encyclopedia/diseases/clubroot/. PHYTOSANITARY CATEGORIZATION: PLADBR: EPPO A2 list; Annex designation 9E.


Assuntos
Brassica napus , Brassica , Plasmodioforídeos , Doenças das Plantas , Canadá
6.
Pathogens ; 10(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668372

RESUMO

Here we review the usefulness of the currently available genomic information for the molecular identification of pathotypes. We focused on effector candidates and genes implied to be pathotype specific and tried to connect reported marker genes to Plasmodiophora brassicae genome information. The potentials for practical applications, current obstacles and future perspectives are discussed.

8.
BMC Plant Biol ; 19(1): 288, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262271

RESUMO

BACKGROUND: Clubroot disease caused by Plasmodiophora brassicae (Phytomyxea, Rhizaria) is one of the economically most important diseases of Brassica crops. The formation of hypertrophied roots accompanied by altered metabolism and hormone homeostasis is typical for infected plants. Not all roots of infected plants show the same phenotypic changes. While some roots remain uninfected, others develop galls of diverse size. The aim of this study was to analyse and compare the intra-plant heterogeneity of P. brassicae root galls and symptomless roots of the same host plants (Brassica oleracea var. gongylodes) collected from a commercial field in Austria using transcriptome analyses. RESULTS: Transcriptomes were markedly different between symptomless roots and gall tissue. Symptomless roots showed transcriptomic traits previously described for resistant plants. Genes involved in host cell wall synthesis and reinforcement were up-regulated in symptomless roots indicating elevated tolerance against P. brassicae. By contrast, genes involved in cell wall degradation and modification processes like expansion were up-regulated in root galls. Hormone metabolism differed between symptomless roots and galls. Brassinosteroid-synthesis was down-regulated in root galls, whereas jasmonic acid synthesis was down-regulated in symptomless roots. Cytokinin metabolism and signalling were up-regulated in symptomless roots with the exception of one CKX6 homolog, which was strongly down-regulated. Salicylic acid (SA) mediated defence response was up-regulated in symptomless roots, compared with root gall tissue. This is probably caused by a secreted benzoic acid/salicylic acid methyl transferase from the pathogen (PbBSMT), which was one of the highest expressed pathogen genes in gall tissue. The PbBSMT derived Methyl-SA potentially leads to increased pathogen tolerance in uninfected roots. CONCLUSIONS: Infected and uninfected roots of clubroot infected plants showed transcriptomic differences similar to those previously described between clubroot resistant and susceptible hosts. The here described intra-plant heterogeneity suggests, that for a better understanding of clubroot disease targeted, spatial analyses of clubroot infected plants will be vital in understanding this economically important disease.


Assuntos
Brassica/genética , Doenças das Plantas/microbiologia , Plasmodioforídeos/fisiologia , Transcriptoma , Brassica/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia
9.
Nat Ecol Evol ; 3(4): 577-581, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833757

RESUMO

The dawn of animals remains one of the most mysterious milestones in the evolution of life. The fossil lipids 24-isopropylcholestane and 26-methylstigmastane are considered diagnostic for demosponges-arguably the oldest group of living animals. The widespread occurrence and high relative abundance of these biomarkers in Ediacaran sediments from 635-541 million years (Myr) ago have been viewed as evidence for the rise of animals to ecological importance approximately 100 Myr before their rapid Cambrian radiation. Here we show that the biosynthesis of 24-isopropylcholestane and 26-methylstigmastane precursors is common among early-branching unicellular Rhizaria-heterotrophic protists that play an important role in trophic cycling and carbon export in the modern ocean. Negating these hydrocarbons as sponge biomarkers, our study places the oldest evidence for animals closer to the Cambrian Explosion. Cambrian silica hexactine spicules that are approximately 535 Myr old now represent the oldest diagnostic sponge remains, whereas approximately 558-Myr-old Dickinsonia and Kimberella (Ediacara biota) provide the most reliable evidence for the emergence of animals. The proliferation of predatory protists may have been responsible for much of the ecological changes during the late Neoproterozoic, including the rise of algae, the establishment of complex trophic relationships and the oxygenation of shallow-water habitats required for the subsequent ascent of macroscopic animals.


Assuntos
Poríferos , Rhizaria , Esteróis , Animais , Biomarcadores , Filogenia
10.
Mol Plant Microbe Interact ; 31(12): 1227-1229, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29969057

RESUMO

The Plasmodiophorida (Phytomyxea, Rhizaria) are a group of protists that infect plants. Of this group, Spongospora subterranea causes major problems for the potato industry by causing powdery scab and root galling of potatoes and as vector for the Potato mop-top virus (PMTV) (genus Pomovirus, family Virgaviridae). A single tuber isolate (SSUBK13) of this uncultivable protist was used to generate DNA for Illumina sequencing. The data were assembled to a draft genome of 28.08 Mb consisting of 2,340 contigs and an L50 of 280. A total of 10,778 genes were predicted and 93% of the BUSCO genes were detected. The presented genome assembly is only the second genome of a plasmodiophorid. The data will accelerate functional genomics to study poorly understood interaction of plasmodiophorids and their hosts.


Assuntos
Genoma de Protozoário/genética , Doenças das Plantas/parasitologia , Plasmodioforídeos/genética , Solanum tuberosum/parasitologia
11.
BMC Genomics ; 19(1): 14, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298673

RESUMO

BACKGROUND: Brassica plant species are attacked by a number of pathogens; among them, the ones with a soil-borne lifestyle have become increasingly important. Verticillium stem stripe caused by Verticillium longisporum is one example. This fungal species is thought to be of a hybrid origin, having a genome composed of combinations of lineages denominated A and D. In this study we report the draft genomes of 2 V. longisporum field isolates sequenced using the Illumina technology. Genomic characterization and lineage composition, followed by selected gene analysis to facilitate the comprehension of its genomic features and potential effector categories were performed. RESULTS: The draft genomes of 2 Verticillium longisporum single spore isolates (VL1 and VL2) have an estimated ungapped size of about 70 Mb. The total number of protein encoding genes identified in VL1 was 20,793, whereas 21,072 gene models were predicted in VL2. The predicted genome size, gene contents, including the gene families coding for carbohydrate active enzymes were almost double the numbers found in V. dahliae and V. albo-atrum. Single nucleotide polymorphisms (SNPs) were frequently distributed in the two genomes but the distribution of heterozygosity and depth was not independent. Further analysis of potential parental lineages suggests that the V. longisporum genome is composed of two parts, A1 and D1, where A1 is more ancient than the parental lineage genome D1, the latter being more closer related to V. dahliae. Presence of the mating-type genes MAT1-1-1 and MAT1-2-1 in the V. longisporum genomes were confirmed. However, the MAT genes in V. dahliae, V. albo-atrum and V. longisporum have experienced extensive nucleotide changes at least partly explaining the present asexual nature of these fungal species. CONCLUSIONS: The established draft genome of V. longisporum is comparatively large compared to other studied ascomycete fungi. Consequently, high numbers of genes were predicted in the two V. longisporum genomes, among them many secreted proteins and carbohydrate active enzyme (CAZy) encoding genes. The genome is composed of two parts, where one lineage is more ancient than the part being more closely related to V. dahliae. Dissimilar mating-type sequences were identified indicating possible ancient hybridization events.


Assuntos
Genoma Fúngico , Verticillium/genética , Metabolismo dos Carboidratos , Evolução Molecular , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento , Filogenia , Polimorfismo de Nucleotídeo Único , Microbiologia do Solo , Verticillium/classificação , Verticillium/enzimologia , Verticillium/isolamento & purificação
12.
Mol Plant Pathol ; 19(4): 1029-1044, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29024322

RESUMO

Fungi, nematodes and oomycetes belong to the most prominent eukaryotic plant pathogenic organisms. Unicellular organisms from other eukaryotic lineages, commonly addressed as protists, also infect plants. This review provides an introduction to plant pathogenic protists, including algae infecting oomycetes, and their current state of research.


Assuntos
Plantas/microbiologia , Oomicetos/patogenicidade , Plasmodioforídeos/patogenicidade
13.
Arch Microbiol ; 199(10): 1383-1389, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28741076

RESUMO

Verticillium species are soilborne plant pathogens, responsible for big yield losses worldwide. Here, we report improved procedures to generate DNA from Verticillium species imbedded in farm soils. Using new genomic sequence information, primers for V. dahliae, V. albo-atrum, V. tricorpus, and V. longisporum were designed. In a survey of 429 samples from intensively farmed soil of two Swedish regions, only V. dahliae and V. longisporum were identified. A bias towards V. longisporum (40%) was seen in the south, whereas V. dahliae was more frequent in the western region (19%). Analyses of soil and leaf samples from 20 sugar beet fields, where foliar wilting had been observed, revealed V. dahliae DNA in all leaf and soil samples and V. longisporum in 18 soil samples, illustrating host choice and longevity of the V. longisporum microsclerotia. This study demonstrates the applicability of new molecular diagnostic tools that are important for growers of variable crops.


Assuntos
Brassicaceae/microbiologia , DNA Fúngico/genética , Verticillium/genética , Verticillium/isolamento & purificação , Primers do DNA/genética , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Solo/química , Microbiologia do Solo , Suécia , Verticillium/classificação
14.
Int J Mol Sci ; 18(7)2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684667

RESUMO

In the publication "Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates", Laila et al.[...].


Assuntos
Plasmodioforídeos/genética , DNA Ribossômico , Geografia , Doenças das Plantas , Polimorfismo Genético
15.
Protist ; 167(6): 544-554, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27750174

RESUMO

Clubroot disease caused by Plasmodiophora brassicae is one of the most important diseases of cultivated brassicas. P. brassicae occurs in pathotypes which differ in the aggressiveness towards their Brassica host plants. To date no DNA based method to distinguish these pathotypes has been described. In 2011 polymorphism within the 28S rDNA of P. brassicae was reported which potentially could allow to distinguish pathotypes without the need of time-consuming bioassays. However, isolates of P. brassicae from around the world analysed in this study do not show polymorphism in their LSU rDNA sequences. The previously described polymorphism most likely derived from soil inhabiting Cercozoa more specifically Neoheteromita-like glissomonads. Here we correct the LSU rDNA sequence of P. brassicae. By using FISH we demonstrate that our newly generated sequence belongs to the causal agent of clubroot disease.


Assuntos
DNA de Protozoário/genética , DNA Ribossômico/genética , Plasmodioforídeos/genética , Polimorfismo Genético , Brassica/parasitologia , Hibridização in Situ Fluorescente , Doenças das Plantas/parasitologia
16.
Mol Biol Evol ; 33(4): 980-3, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26681153

RESUMO

The SAR group (Stramenopila, Alveolata, Rhizaria) is one of the largest clades in the tree of eukaryotes and includes a great number of parasitic lineages. Rhizarian parasites are obligate and have devastating effects on commercially important plants and animals but despite this fact, our knowledge of their biology and evolution is limited. Here, we present rhizarian transcriptomes from all major parasitic lineages in order to elucidate their evolutionary relationships using a phylogenomic approach. Our results suggest that Ascetosporea, parasites of marine invertebrates, are sister to the novel clade Apofilosa. The phytomyxean plant parasites branch sister to the vampyrellid algal ectoparasites in the novel clade Phytorhiza. They also show that Ascetosporea + Apofilosa + Retaria + Filosa + Phytorhiza form a monophyletic clade, although the branching pattern within this clade is difficult to resolve and appears to be model-dependent. Our study does not support the monophyly of the rhizarian parasitic lineages (Endomyxa), suggesting independent origins for rhizarian animal and plant parasites.


Assuntos
Filogenia , Plantas/genética , Rhizaria/genética , Animais , Eucariotos , Plantas/parasitologia , Rhizaria/patogenicidade , Alinhamento de Sequência
18.
Sci Rep ; 5: 11153, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084520

RESUMO

Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes.


Assuntos
Quitina Sintase/genética , Quitina Sintase/metabolismo , Genoma de Protozoário , Estágios do Ciclo de Vida , Plasmodioforídeos/fisiologia , Evolução Biológica , Metabolismo dos Carboidratos , Quitina Sintase/química , Análise por Conglomerados , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Metaboloma , Metabolômica , Modelos Moleculares , Família Multigênica , Reguladores de Crescimento de Plantas/farmacologia , Plasmodioforídeos/efeitos dos fármacos , Conformação Proteica
19.
PLoS Genet ; 8(11): e1003088, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209441

RESUMO

We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.


Assuntos
Adaptação Fisiológica/genética , Cladosporium/genética , Genoma , Interações Hospedeiro-Patógeno , Sequência de Bases , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Filogenia , Pinus/genética , Pinus/parasitologia , Doenças das Plantas/genética
20.
J Microbiol Methods ; 87(1): 32-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21777628

RESUMO

Dothistroma septosporum is the causal agent of Dothistroma needle blight of pine trees. A novel green fluorescent protein (GFP)-based screening method was developed to assess the potential of microorganisms for biocontrol of Dothistroma. The screen utilizes GFP expression as an indicator of metabolic activity in the pathogen and hygromycin resistance selection to determine if the interaction is fungistatic or fungicidal. Results suggested that six of eight Trichoderma isolates tested have the potential to control Dothistroma in vitro, via a fungicidal action. Because D. septosporum produces a broad-spectrum toxin, dothistromin, the inhibition of Trichoderma spp. by D. septosporum was determined by growth rate measurements compared to controls. Inhibition of the Trichoderma spp. ranged from no inhibition to 30% inhibition and was influenced by the assay medium used. The GFP screening method was also assessed to determine if it was suitable for screening bacteria as potential biocontrol candidates. Although a method involving indirect-contact had to be used, two of four Bacillus strains showed antagonistic activity against D. septosporum in vitro, via a fungistatic interaction. The four bacterial strains inhibited D. septosporum growth by 14.0 to 39.8%. This GFP-based method represents a novel approach to screening fungi and bacteria for antagonistic activity.


Assuntos
Agentes de Controle Biológico , Proteínas de Fluorescência Verde/genética , Doenças das Plantas/microbiologia , Proteínas Recombinantes/genética , Saccharomycetales/genética , Bacillus/metabolismo , Bacillus/fisiologia , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Interações Microbianas , Micologia/métodos , Paenibacillus/metabolismo , Paenibacillus/fisiologia , Pinus/microbiologia , Folhas de Planta/microbiologia , Proteínas Recombinantes/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Trichoderma/metabolismo , Trichoderma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...