Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Jpn J Radiol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819694

RESUMO

PURPOSE: To investigate glymphatic system function in patients with brain tumors, including both primary and secondary tumors, using diffusion tensor imaging along perivascular spaces (DTI-ALPS). METHODS: We retrospectively analyzed the MR DTI of 24 patients with unilateral brain tumors and compared them with age and sex-matched controls. We compared the DTI-ALPS index of the ipsi- and contralateral brain hemispheres. The region of interest was placed in the periventricular vessels adjacent to the lateral ventricles. Differences between sex, age, and kind of tumor (primary or brain metastasis) were evaluated. Correlations between DTI-ALPS index and age and the tumor's apparent diffusion coefficient (ADC) were also investigated. RESULTS: The DTI-ALPS index was significantly lower (p < 0.05) in the tumor-affected hemisphere (mean = 1.26 ± 0.24) than contralateral (mean = 1.43 ± 0.28). A comparison with healthy controls revealed no significant difference on the matched ipsilateral side. However, the DTI-ALPS index of the contralateral side of the patients was larger than the HC. Additionally, no statistically significant differences were found when analyzing the DTI-ALPS index vs. age, sex, and tumor entity. Additionally, we did not find a correlation between the DTI-ALPS index and patient age or tumor ADC. CONCLUSION: The decreased DTI-ALPS index in the tumor-affected hemisphere may be related to impaired glymphatic system function. However, cancer is often a systemic disease; thus, the DTI-ALPS index from the contralateral brain hemisphere may not generally be considered as a normal control. Nonetheless, the DTI-ALPS index does not only reflect diffusion in the perivascular spaces but it can also be influenced by factors such as axonal degeneration. Therefore, it does not directly reflect brain waste clearance and changes in the index should be interpreted carefully.

2.
Front Neurol ; 13: 883213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203994

RESUMO

Background: "Central dizziness" due to acute bilateral midline cerebellar disease sparing the posterior vermis has specific oculomotor signs. The oculomotor region of the cerebellar fastigial nucleus (FOR) crucially controls the accuracy of horizontal visually-guided saccades and smooth pursuit eye movements. Bilateral FOR lesions elicit bilateral saccade hypermetria with preserved pursuit. It is unknown whether the initial acceleration of smooth pursuit is impaired in patients with bilateral FOR lesions. Objective: We studied the effect of a cerebellar lesion affecting the deep cerebellar nuclei on the initial horizontal pursuit acceleration and investigated whether saccade dysmetria also affects other types of volitional saccades, i.e., memory-guided saccades and anti-saccades, which are not performed in immediate response to the visual target. Methods: We recorded eye movements during a sinusoidal and step-ramp target motion paradigm as well as visually-guided saccades, memory-guided saccades, and anti-saccades in one patient with a circumscribed cerebellar hemorrhage and 18 healthy control subjects using a video-based eye tracker. Results: The lesion comprised the FOR bilaterally but spared the posterior vermis. The initial pursuit acceleration was low but not significantly different from the healthy control subjects and sinusoidal pursuit was normal. Bilateral saccade hypermetria was not only seen with visually-guided saccades but also with anti-saccades and memory-guided saccades. The final eye position remained accurate. Conclusion: We provide new insights into the contribution of the bilateral deep cerebellar nuclei on the initial acceleration of human smooth pursuit in midline cerebellar lesions. In line with experimental bilateral FOR lesion data in non-human primates, the initial pursuit acceleration in our patient was not significantly reduced, in contrast to the effects of unilateral experimental FOR lesions. Working memory and neural representation of target locations seem to remain unimpaired. Our data argue against an impaired common command feeding the circuits controlling saccadic and pursuit eye movements and support the hypothesis of independent influences on the neural processes generating both types of eye movements in the deep cerebellar nuclei.

3.
Sci Rep ; 11(1): 14082, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234207

RESUMO

Cerebral aneurysms are potentially life threatening and nowadays treated by a catheter-guided coiling or by a neurosurgical clipping intervention. Here, we propose a helically shaped magnetic micro-robot, which can be steered by magnetic fields in an untethered manner and could be applied for a novel coiling procedure. This is shown by navigating the micro-robot through an additively manufactured phantom of a human cerebral aneurysm. The magnetic fields are applied with a magnetic particle imaging (MPI) scanner, which allows for the navigation and tomographic visualization by the same machine. With MPI the actuation process can be visualized with a localization accuracy of 0.68 mm and an angiogram can be acquired both without any radiation exposure. First in-vitro phantom experiments are presented, showing an idea of a robot conducted treatment of cerebral aneurysms.


Assuntos
Diagnóstico por Imagem/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Imagens de Fantasmas , Procedimentos Cirúrgicos Robóticos , Humanos , Hipertermia Induzida , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Procedimentos Cirúrgicos Robóticos/métodos , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...