Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(34): 18517-18524, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612390

RESUMO

A route towards covalent functionalization of chemically inert 2H-MoS2 exploiting sulfur vacancies is explored by means of (TD)DFT and GW/BSE calculations. Functionalization via nitrogen incorporation at sulfur vacancies is shown to result in more stable covalent binding than via thiol incorporation. In this way, defective monolayer MoS2 is repaired and the quasiparticle band structure as well as the remarkable optical properties of pristine MoS2 are restored. Hence, defect-free functionalization with various molecules is possible. Our results for covalently attached azobenzene, as a prominent photo-switch, pave the way to create photoresponsive two-dimensional (2D) materials.

2.
Chem Sci ; 11(23): 5895-5901, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32874511

RESUMO

Thermal treatment of the bicyclo[1.1.0]tetrasilatetraamide [Si4{N(SiMe3)Dipp}4] 1 resulted in the formation of a highly unsaturated six-vertex silicon cluster [Si6{N(SiMe3)Dipp}4] 2 with only four amine-substituents and two ligand-free silicon atoms. In solution, a major and a minor conformer of this cluster are in equilibrium according to multinuclear NMR spectroscopy, lineshape analysis, DFT calculations and molecular dynamics simulations. The bonding situation in the highly unsaturated cluster features lone pair type character at the ligand-free silicon atoms and partial single and double bond character in the upper butterfly-shaped ring of 2. This allows to consider 2 as the silicon analogue of a butalene isomer.

3.
Nano Lett ; 20(8): 5922-5928, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32510964

RESUMO

A molecular rotor based on N-heterocyclic carbenes (NHCs) has been rationally designed following theoretical predictions, experimentally realized, and characterized. Utilizing the structural tunability of NHCs, a computational screening protocol was first applied to identify NHCs with asymmetric rotational potentials on a surface as a prerequisite for unidirectional molecular rotors. Suitable candidates were then synthesized and studied using scanning tunneling microscopy/spectroscopy (STM/STS), analytical theoretical models, and molecular dynamics simulations. For our best NHC rotor featuring a mesityl N substituent on one side and a chiral naphthylethyl substituent on the other, unidirectional rotation is driven by inelastic tunneling of electrons from the NHC to the STM tip. While electrons preferentially tunnel through the mesityl N substituent, the chiral naphthylethyl substituent controls the directionality. Such NHC-based surface rotors open up new possibilities for the design and construction of functionalized molecular systems with high catalytic applicability and superior stability compared with other classes of molecular rotors.

4.
J Phys Chem Lett ; 11(14): 5490-5496, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32584044

RESUMO

Solid-state excitonic excitations play an increasingly important role in optoelectronic and light harvesting processes due to their ubiquitous presence in dipolar two-dimensional materials. Here we show that long-lived solid-state excitons induce chemical reactions in adsorbed molecules and thus convert light into chemical energy. For the model system (NO)2 dimer adsorbed on ordered c(4×4) C60 films, time-of-flight measurements following UV laser excitation reveal a slow and a fast dissociative desorption channel, which are assigned to intersystem crossing and internal conversion, respectively, by time-dependent density functional theory calculations.

5.
Phys Chem Chem Phys ; 22(19): 10526-10535, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31974540

RESUMO

A computational approach is presented which allows the calculation of free energies profiles for exciton transfer processes within the framework of ab initio molecular dynamics (AIMD) simulations, sampling both the electronic and the nuclear degrees of freedom. To achieve this, restraining potentials are imposed on the centres of maximally localized Wannier orbitals. The resulting quantum-mechanical orbital forces are derived analytically and implemented in an AIMD program. In analogy to classical umbrella sampling techniques, these restraints are used to control an exciton transfer by incrementally moving the Wannier centres corresponding to the electron-hole pair along a suitable reaction coordinate. The new method is applied to study exciton transfer between two stacked penta(3-methylthiophene) molecules as a function of intermolecular distance. From the resulting free energy profiles, exciton transfer rates and diffusion constants are estimated, which prove to be in line with experimental results.

6.
Phys Chem Chem Phys ; 20(25): 16918-16923, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29904778

RESUMO

Chemical treatments to enhance photoluminescence (PL) in MoS2 have been explored extensively by experimental means in recent years. However, satisfactory theoretical explanations of the underlying mechanisms remain elusive. In this work, the surface reactions of the superacid bis(trifluoromethane)-sulfonimide (TFSI), hydrogen peroxide (H2O2), molecular oxygen (O2), and sulfuric acid (H2SO4) on a defective MoS2 monolayer have been studied using first principles calculations. An oxygen transfer reaction into a sulfur vacancy with a low activation barrier and thus significant reaction rates already at room temperature has been found. Band structure unfolding techniques show that the incorporation of oxygen atoms into sulfur vacancies restores the band structure of pristine MoS2, which is predicted to have a high PL quantum yield. PL spectroscopy is used to examine the effect of chemical treatment on PL intensity. Our experimental findings support our theoretical predictions, as PL in MoS2 is enhanced by up to a factor 20 after treatment with H2O2 or H2SO4, while the spectral shape is only slightly altered.

7.
J Am Chem Soc ; 139(27): 9144-9147, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28635251

RESUMO

We report the N-heterocyclic carbene (NHC)-induced activation of an otherwise unreactive Pd/Al2O3 catalyst. Surface analysis techniques demonstrate the NHC being coordinated to the palladium particles and affecting their electronic properties. Ab initio calculations provide further insight into the electronic effect of the coordination with the NHC injecting electron density into the metal nanocluster thus lowering the barrier for bromobenzene activation. By this NHC modification, the catalyst could be successfully applied in the Buchwald-Hartwig amination of aryl chlorides, bromides, and iodides. Various heterogeneity tests could additionally show that the reaction proceeds via a heterogeneous active species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...