Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(22): 221101, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35714251

RESUMO

The origins of the high-energy cosmic neutrino flux remain largely unknown. Recently, one high-energy neutrino was associated with a tidal disruption event (TDE). Here we present AT2019fdr, an exceptionally luminous TDE candidate, coincident with another high-energy neutrino. Our observations, including a bright dust echo and soft late-time x-ray emission, further support a TDE origin of this flare. The probability of finding two such bright events by chance is just 0.034%. We evaluate several models for neutrino production and show that AT2019fdr is capable of producing the observed high-energy neutrino, reinforcing the case for TDEs as neutrino sources.

2.
Nature ; 523(7559): 189-92, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26156372

RESUMO

A new class of ultra-long-duration (more than 10,000 seconds) γ-ray bursts has recently been suggested. They may originate in the explosion of stars with much larger radii than those producing normal long-duration γ-ray bursts or in the tidal disruption of a star. No clear supernova has yet been associated with an ultra-long-duration γ-ray burst. Here we report that a supernova (SN 2011kl) was associated with the ultra-long-duration γ-ray burst GRB 111209A, at a redshift z of 0.677. This supernova is more than three times more luminous than type Ic supernovae associated with long-duration γ-ray bursts, and its spectrum is distinctly different. The slope of the continuum resembles those of super-luminous supernovae, but extends further down into the rest-frame ultraviolet implying a low metal content. The light curve evolves much more rapidly than those of super-luminous supernovae. This combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...