Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1492: 27-40, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28285711

RESUMO

In addition to the selection or adjustment of phase systems to gain a suitable partition coefficient for the target molecule, the separation efficiency in centrifugal partition chromatography (CPC) is strongly influenced by the hydrodynamic interactions of the mobile and the stationary phase in the chambers. Thus, the hydrodynamic interactions must be investigated and understood in order to enhance a CPC separation run. Different hydrodynamic effects like mass transfer, back mixing and the non-ideal behavior of stationary phase, which cannot be determined directly, are known, but quantifying these effects and their influence on separation performance is barely achieved. In order to understand their influence, a physically detailed mathematical model of a CPC chamber was developed. The model includes a parameter representing the hydrodynamic effects mentioned above and is able to determine the parameters significance by fitting them to separation experiment data. The acquired knowledge is used to correlate the effects of the hydrodynamic influences on the separation performance and can be used to forecast hydrodynamic and separation behavior in a CPC device.


Assuntos
Cromatografia Líquida/métodos , Catecóis/análise , Catecóis/isolamento & purificação , Centrifugação , Cromatografia Líquida/instrumentação , Hidrodinâmica , Hidroquinonas/análise , Hidroquinonas/isolamento & purificação , Solventes/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-26295695

RESUMO

For the production of bio active compounds, e.g., active enzymes or antibodies, a conserved purification process with a minimum loss of active compounds is necessary. In centrifugal partition chromatography (CPC), the separation effect is based on the different distribution of the components to be separated between two immiscible liquid phases. Thereby, one liquid phase is kept stationary in chambers by a centrifugal field and the mobile phase is pumped through via connecting ducts. Aqueous two phase systems (ATPS) are known to provide benign conditions for biochemical products and seem to be promising when used in CPC for purification tasks. However, it is not known if active biochemical compounds can "survive" the conditions in a CPC where strong shear forces can occur due to the two-phasic flow under centrifugal forces. Therefore, this aspect has been faced within this study by the separation of active laccases from a fermentation broth of Pleurotus sapidus. After selecting a suitable ATPS and operating conditions, the activity yield was calculated and the preservation of the active enzymes could be observed. Therefore, CPC could be shown as potentially suitable for the purification of bio-active compounds.


Assuntos
Cromatografia Líquida/métodos , Lacase/isolamento & purificação , Pleurotus/enzimologia , Centrifugação
3.
J Chromatogr A ; 1390: 39-49, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25766495

RESUMO

In centrifugal partition chromatography (CPC) the separation efficiency is mainly influenced by the hydrodynamic of mobile and stationary phase in the chambers. Thus, the hydrodynamic has to be investigated and understood in order to enhance a CPC separation run. Different chamber geometries have been developed in the past and the influence of several phase systems and CPC operating conditions were investigated for these chambers. However, a direct comparison between the different chamber types has not been performed yet. In order to investigate the direct influence of the chamber design on the hydrodynamic, several chamber designs - partially similar in geometry to commercial available designs - are investigated under standardized conditions in the present study. The results show the influence of geometrical aspects of the chamber design on the hydrodynamic and therewith, on the separation efficiency. As a conclusion of the present study, some ideas for an optimal chamber design for laboratory and industrial purpose are proposed.


Assuntos
Distribuição Contracorrente/métodos , Centrifugação , Distribuição Contracorrente/instrumentação , Hidrodinâmica
4.
J Chromatogr A ; 1218(36): 6092-101, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21324465

RESUMO

The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems.


Assuntos
Centrifugação/instrumentação , Cromatografia Líquida/instrumentação , Centrifugação/métodos , Cromatografia Líquida/métodos , Modelos Teóricos , Solubilidade , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...