Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 43(8): 1365-1382, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37073477

RESUMO

Fire is a major cause of tree injury and mortality worldwide, yet our current understanding of fire effects is largely based on ocular estimates of stem charring and foliage discoloration, which are error prone and provide little information on underlying tree function. Accurate quantification of physiological performance is a research and forest management need, given that declining performance could help identify mechanisms of-and serve as an early warning sign for-mortality. Many previous efforts have been hampered by the inability to quantify the heat flux that a tree experiences during a fire, given its highly variable nature in space and time. In this study, we used a dose-response approach to elucidate fire impacts by subjecting Pinus monticola var. minima Lemmon and Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco saplings to surface fires of varying intensity doses and measuring short-term post-fire physiological performance in photosynthetic rate and chlorophyll fluorescence. We also evaluated the ability of spectral reflectance indices to quantify change in physiological performance at the individual tree crown and stand scales. Although physiological performance in both P. monticola and P. menziesii declined with increasing fire intensity, P. monticola maintained a greater photosynthetic rate and higher chlorophyll fluorescence at higher doses, for longer after the fire. Pinus monticola also had complete survival at lower fire intensity doses, whereas P. menziesii had some mortality at all doses, implying higher fire resistance for P. monticola at this life stage. Generally, individual-scale spectral indices were more accurate at quantifying physiological performance than those acquired at the stand-scale. The Photochemical Reflectance Index outperformed other indices at quantifying photosynthesis and chlorophyll fluorescence, highlighting its potential use to quantify crown scale physiological performance. Spectral indices that incorporated near-infrared and shortwave infrared reflectance, such as the Normalized Burn Ratio, were accurate at characterizing stand-scale mortality. The results from this study were included in a conifer cross-comparison using physiology and mortality data from other dose-response studies. The comparison highlights the close evolutionary relationship between fire and species within the Pinus genus, assessed to date, given the high survivorship of Pinus species at lower fire intensities versus other conifers.


Assuntos
Pinus , Pseudotsuga , Traqueófitas , Evolução Biológica , Cycadopsida , Árvores , Clorofila
2.
PNAS Nexus ; 1(3): pgac115, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741468

RESUMO

Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the "firehose" of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.

3.
New Phytol ; 206(2): 486-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25800615
4.
J Plant Physiol ; 177: 20-29, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25659333

RESUMO

Phalaris arundinacea displaces the slower-growing, native sedge, Carex stricta, where nitrogen availability is high. Our aim was to address whether morphological and physiological traits associated with carbon gain for P. arundinacea and C. stricta responded to nitrogen supply differently and if the species exhibited different degrees of plasticity in these traits. The plants were grown in gravel and provided modified Hoagland's solution containing four nitrogen concentrations from 0.15 to 15 mM for 6 to 7 weeks. Supplied nitrogen affected the leaf nitrogen content to the same degree for both species. Increasing supplied nitrogen strongly increased CO2 assimilation (A), photosynthetic nitrogen use efficiency (PNUE), and respiration for P. arundinacea but had only a small effect on these parameters for C. stricta. Relative to growth at 15 mM nitrogen, growth at 0.15 mM for young leaves decreased carboxylation capacity and efficiency and the capacity for electron transport for P. arundinacea and a larger, stouter Carex species, Carex lacustris, by 53 to 70% but only 20 to 24% for C. stricta. Leaf nitrogen decreased approximately 50% for all species, but vacuolar nitrate did not decrease for P. arundinacea and C. stricta, suggesting that it does not serve as a nitrogen reserve for use during nitrogen deprivation in these species. After 4 months of nitrogen deprivation, P. arundinacea doubled A in 12 days after being supplied 15 mM nitrogen, whereas A for C. stricta increased only 22%. We propose that one factor linking P. arundinacea abundance to nitrogen availability involves this species' plastic response of carbon gain to nitrogen supply. C. stricta appears to be adapted to tolerate low nitrogen availability but cannot respond as rapidly and extensively as P. arundinacea when nitrogen supply is high.


Assuntos
Dióxido de Carbono/metabolismo , Carex (Planta)/metabolismo , Nitrogênio/metabolismo , Phalaris/metabolismo , Fotossíntese , Carex (Planta)/crescimento & desenvolvimento , Espécies Introduzidas , Phalaris/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Áreas Alagadas
5.
PeerJ ; 2: e477, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25083346

RESUMO

In 2011, Big Bend National Park, Texas, USA, experienced the most severe single year drought in its recorded history, resulting in significant plant mortality. We used this event to test how perennial plant response to drought varied across elevation, plant growth form and leaf traits. In October 2010 and October 2011, we measured plant cover by species at six evenly-spaced elevations ranging from Chihuahuan desert (666 m) to oak forest in the Chisos mountains (1,920 m). We asked the following questions: what was the relationship between elevation and stem dieback and did susceptibility to drought differ among functional groups or by leaf traits? In 2010, pre-drought, we measured leaf mass per area (LMA) on each species. In 2011, the percent of canopy dieback for each individual was visually estimated. Living canopy cover decreased significantly after the drought of 2011 and dieback decreased with elevation. There was no relationship between LMA and dieback within elevations. The negative relationship between proportional dieback and elevation was consistent in shrub and succulent species, which were the most common growth forms across elevations, indicating that dieback was largely driven by elevation and not by species traits. Growth form turnover did not influence canopy dieback; differences in canopy cover and proportional dieback among elevations were driven primarily by differences in drought severity. These results indicate that the 2011 drought in Big Bend National Park had a large effect on communities at all elevations with average dieback for all woody plants ranging from 8% dieback at the highest elevation to 83% dieback at lowest elevations.

6.
PLoS One ; 8(11): e79285, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244469

RESUMO

Trees may survive fire through persistence of above or below ground structures. Investment in bark aids in above-ground survival while investment in carbohydrate storage aids in recovery through resprouting and is especially important following above-ground tissue loss. We investigated bark allocation and carbohydrate investment in eight common oak (Quercus) species of Sky Island mountain ranges in west Texas. We hypothesized that relative investment in bark and carbohydrates changes with tree age and with fire regime: We predicted delayed investment in bark (positive allometry) and early investment in carbohydrates (negative allometry) under lower frequency, high severity fire regimes found in wetter microclimates. Common oaks of the Texas Trans-Pecos region (Quercus emoryi, Q. gambelii, Q. gravesii, Q. grisea, Q. hypoleucoides, Q. muehlenbergii, and Q. pungens) were sampled in three mountain ranges with historically mixed fire regimes: the Chisos Mountains, the Davis Mountains and the Guadalupe Mountains. Bark thickness was measured on individuals representing the full span of sizes found. Carbohydrate concentration in taproots was measured after initial leaf flush. Bark thickness was compared to bole diameter and allometries were analyzed using major axis regression on log-transformed measurements. We found that bark allocation strategies varied among species that can co-occur but have different habitat preferences. Investment patterns in bark were related to soil moisture preference and drought tolerance and, by proxy, to expected fire regime. Dry site species had shallower allometries with allometric coefficients ranging from less than one (negative allometry) to near one (isometric investment). Wet site species, on the other hand, had larger allometric coefficients, indicating delayed investment to defense. Contrary to our expectation, root carbohydrate concentrations were similar across all species and sizes, suggesting that any differences in below ground storage are likely to be in total volume of storage tissue rather than in carbohydrate concentration.


Assuntos
Incêndios , Casca de Planta , Quercus , Texas
7.
New Phytol ; 194(3): 751-759, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22348443

RESUMO

• The mapping of functional traits onto chronograms is an emerging approach for the identification of how agents of natural selection have shaped the evolution of organisms. Recent research has reported fire-dependent traits appearing among flowering plants from 60 million yr ago (Ma). Although there are many records of fossil charcoal in the Cretaceous (65-145 Ma), evidence of fire-dependent traits evolving in that period is lacking. • We link the evolutionary trajectories for five fire-adapted traits in Pinaceae with paleoatmospheric conditions over the last 250 million yr to determine the time at which fire originated as a selective force in trait evolution among seed plants. • Fire-protective thick bark originated in Pinus c. 126 Ma in association with low-intensity surface fires. More intense crown fires emerged c. 89 Ma coincident with thicker bark and branch shedding, or serotiny with branch retention as an alternative strategy. These innovations appeared at the same time as the Earth's paleoatmosphere experienced elevated oxygen levels that led to high burn probabilities during the mid-Cretaceous. • The fiery environments of the Cretaceous strongly influenced trait evolution in Pinus. Our evidence for a strong correlation between the evolution of fire-response strategies and changes in fire regime 90-125 Ma greatly backdates the key role that fire has played in the evolution of seed plants.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Incêndios , Magnoliopsida/genética , Pinus/genética , Seleção Genética , Meio Ambiente , Fósseis , Magnoliopsida/fisiologia , Oxigênio , Fenótipo , Filogenia , Pinus/fisiologia , Casca de Planta/genética , Casca de Planta/fisiologia , Sementes , Fatores de Tempo
8.
PLoS One ; 7(2): e31173, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348051

RESUMO

Simple models of plant response to warming climates predict vegetation moving to cooler and/or wetter locations: in mountainous regions shifting upslope. However, species-specific responses to climate change are likely to be much more complex. We re-examined a recently reported vegetation shift in the Santa Rosa Mountains, California, to better understand the mechanisms behind the reported shift of a plant distribution upslope. We focused on five elevational zones near the center of the gradient that captured many of the reported shifts and which are dominated by fire-prone chaparral. Using growth rings, we determined that a major assumption of the previous work was wrong: past fire histories differed among elevations. To examine the potential effect that this difference might have on the reported upward shift, we focused on one species, Ceanothus greggii: a shrub that only recruits post-fire from a soil stored seedbank. For five elevations used in the prior study, we calculated time series of past per-capita mortality rates by counting growth rings on live and dead individuals. We tested three alternative hypotheses explaining the past patterns of mortality: 1) mortality increased over time consistent with climate warming, 2) mortality was correlated with drought indices, and 3) mortality peaked 40-50 years post fire at each site, consistent with self-thinning. We found that the sites were different ages since the last fire, and that the reported increase in the mean elevation of C. greggii was due to higher recent mortality at the lower elevations, which were younger sites. The time-series pattern of mortality was best explained by the self-thinning hypothesis and poorly explained by gradual warming or drought. At least for this species, the reported distribution shift appears to be an artifact of disturbance history and is not evidence of a climate warming effect.


Assuntos
Ceanothus/crescimento & desenvolvimento , Mudança Climática , Demografia , Modelos Biológicos , Artefatos , Secas , Incêndios , Temperatura
9.
Ecol Lett ; 14(2): 141-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21166972

RESUMO

Ecologists and conservation biologists have historically used species-area and distance-decay relationships as tools to predict the spatial distribution of biodiversity and the impact of habitat loss on biodiversity. These tools treat each species as evolutionarily equivalent, yet the importance of species' evolutionary history in their ecology and conservation is becoming increasingly evident. Here, we provide theoretical predictions for phylogenetic analogues of the species-area and distance-decay relationships. We use a random model of community assembly and a spatially explicit flora dataset collected in four Mediterranean-type regions to provide theoretical predictions for the increase in phylogenetic diversity - the total phylogenetic branch-length separating a set of species - with increasing area and the decay in phylogenetic similarity with geographic separation. These developments may ultimately provide insights into the evolution and assembly of biological communities, and guide the selection of protected areas.


Assuntos
Biota , Magnoliopsida/classificação , Austrália , California , Chile , Conservação dos Recursos Naturais , Ecologia , Modelos Biológicos , Filogenia , Dinâmica Populacional , África do Sul , Árvores/classificação
10.
Ecol Appl ; 19(2): 285-304, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19323191

RESUMO

Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction treatments and their effect on ecological parameters we used an information-theoretic approach on a suite of 12 variables representing the overstory (basal area and live tree, sapling, and snag density), the understory (seedling density, shrub cover, and native and alien herbaceous species richness), and the most relevant fuel parameters for wildfire damage (height to live crown, total fuel bed mass, forest floor mass, and woody fuel mass). In the short term (one year after treatment), mechanical treatments were more effective at reducing overstory tree density and basal area and at increasing quadratic mean tree diameter. Prescribed fire treatments were more effective at creating snags, killing seedlings, elevating height to live crown, and reducing surface woody fuels. Overall, the response to fuel reduction treatments of the ecological variables presented in this paper was generally maximized by the combined mechanical plus burning treatment. If the management goal is to quickly produce stands with fewer and larger diameter trees, less surface fuel mass, and greater herbaceous species richness, the combined treatment gave the most desirable results. However, because mechanical plus burning treatments also favored alien species invasion at some sites, monitoring and control need to be part of the prescription when using this treatment.


Assuntos
Conservação dos Recursos Naturais , Incêndios , Agricultura Florestal/métodos , Árvores , Biodiversidade , Densidade Demográfica , Estações do Ano , Árvores/anatomia & histologia , Estados Unidos
11.
Am J Bot ; 92(3): 404-10, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21652416

RESUMO

Many woody plant species that depend upon fire-cued seed germination lack the ability to resprout. As the ability to resprout is widely assumed to be the ancestral condition in most plant groups, the failure to sprout is an evolutionary derived trait. Models for the evolutionary loss of sprouting assume a trade-off between seedling success and vegetative resprouting ability of adults. Such models require higher seedling success rates in nonsprouters than in sprouters. On the other hand, there seem to be few a priori reasons why a strong sprouter might not also have highly competitive post-fire seedlings. To test the hypothesis that nonsprouting plants have higher growth rates and/or drought survival, we grew seedlings of Ceanothus tomentosus from sprouting and nonsprouting populations in a common garden experiment. Each of these C. tomentosus populations was paired with a sympatric Ceanothus species that differed in resprouting ability. Sprouters exhibited greater allocation to root carbohydrate storage than did nonsprouters, but overall relative growth rates did not differ. Nonsprouters had earlier onset of flowering. These results provide mixed support for models of a sprouting/nonsprouting allocation trade-off.

12.
Am Nat ; 162(6): 725-33, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14737710

RESUMO

By affecting local fire intensities or the probability of ignition, traits that influence plant flammability may indirectly control selection for fire-related life-history and physiological traits. The retention of dead branches in the canopy has been cited as contributing to plant flammability. No experiment, however, has demonstrated that differences in plant canopy architecture on the scale of observed variation in nature can affect local fire characteristics. I experimentally manipulated canopies of Adenostoma fasciculatum, a California shrub that naturally retains dead branches, to mimic degrees of self-pruning in four small-scale (4 m x 6 m) treatments: removal of all canopy dead wood, clipping of all dead wood with wood left as litter, an unmanipulated treatment, and a dead wood addition. Treatment plots were burned in large-scale prescribed fires. Fire temperatures and heat release were significantly higher in Unmanipulated and Addition treatments, demonstrating a significant local effect of dead branch retention. Removal and Clip and Leave treatments did not differ significantly; the observed effect is a result of canopy architecture rather than differences in total fuel load.


Assuntos
Meio Ambiente , Incêndios , Rosaceae/fisiologia , Seleção Genética , Árvores/fisiologia , California , Calorimetria , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...