Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 20(2): 176-188, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27991900

RESUMO

The hypothalamus contains the highest diversity of neurons in the brain. Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto relied on candidate protein-based tools to correlate behavioral, endocrine and gender traits with hypothalamic neuron identity. Here we map neuronal identities in the hypothalamus by single-cell RNA sequencing. We distinguished 62 neuronal subtypes producing glutamatergic, dopaminergic or GABAergic markers for synaptic neurotransmission and harboring the ability to engage in task-dependent neurotransmitter switching. We identified dopamine neurons that uniquely coexpress the Onecut3 and Nmur2 genes, and placed these in the periventricular nucleus with many synaptic afferents arising from neuromedin S+ neurons of the suprachiasmatic nucleus. These neuroendocrine dopamine cells may contribute to the dopaminergic inhibition of prolactin secretion diurnally, as their neuromedin S+ inputs originate from neurons expressing Per2 and Per3 and their tyrosine hydroxylase phosphorylation is regulated in a circadian fashion. Overall, our catalog of neuronal subclasses provides new understanding of hypothalamic organization and function.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Imuno-Histoquímica/métodos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurotransmissores/fisiologia , Núcleo Supraquiasmático/metabolismo , Transmissão Sináptica/fisiologia
2.
Cereb Cortex ; 27(4): 2453-2468, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27102657

RESUMO

Although extensively studied postnatally, the functional differentiation of cholecystokinin (CCK)-containing interneurons en route towards the cerebral cortex during fetal development is incompletely understood. Here, we used CCKBAC/DsRed mice encoding a CCK promoter-driven red fluorescent protein to analyze the temporal dynamics of DsRed expression, neuronal identity, and positioning through high-resolution developmental neuroanatomy. Additionally, we developed a dual reporter mouse line (CCKBAC/DsRed::GAD67gfp/+) to differentiate CCK-containing interneurons from DsRed+ principal cells during prenatal development. We show that DsRed is upregulated in interneurons once they exit their proliferative niche in the ganglionic eminence and remains stably expressed throughout their long-distance migration towards the cerebrum, particularly in the hippocampus. DsRed+ interneurons, including a cohort coexpressing calretinin, accumulated at the palliosubpallial boundary by embryonic day 12.5. Pioneer DsRed+ interneurons already reached deep hippocampal layers by embryonic day 14.5 and were morphologically differentiated by birth. Furthermore, we probed migrating interneurons entering and traversing the cortical plate, as well as stationary cells in the hippocampus by patch-clamp electrophysiology to show the first signs of Na+ and K+ channel activity by embryonic day 12.5 and reliable adult-like excitability by embryonic day 18.5. Cumulatively, this study defines key positional, molecular, and biophysical properties of CCK+ interneurons in the prenatal brain.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/citologia , Colecistocinina/metabolismo , Interneurônios/citologia , Neurogênese/fisiologia , Animais , Movimento Celular , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Técnicas de Patch-Clamp
3.
J Immunol ; 184(1): 184-90, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19949095

RESUMO

Formation of an immunological synapse (IS) between APC and T cells activates calcium entry through ORAI channels, which is indispensable for T cell activation. Successful proliferation and maturation of naive T cells is possible only if premature inactivation of ORAI channels is prevented. Although it is undisputed that calcium entry through ORAI channels is required for T cell function, it is not known if calcium influx is uniformly distributed over the plasma membrane or if preferential local calcium entry sites (for instance, at the IS) exist. In this study, we show that mitochondrial positioning determines the magnitude of local calcium entry anywhere in the plasma membrane by reducing local calcium-dependent channel inactivation: if mitochondria are close to any given local calcium entry site, calcium influx is large; if they are not close, calcium influx is small. Following formation of the IS, mitochondria are preferentially translocated to the IS in a calcium influx-dependent manner but independent of the exact calcium influx site. Mitochondrial enrichment at the IS favors local calcium entry at the IS without the necessity to enrich ORAI channels at the IS. We conclude that local calcium entry rather than global calcium entry is the preferential mechanism of calcium entry at stable ISs in Th cells.


Assuntos
Cálcio/metabolismo , Sinapses Imunológicas/fisiologia , Ativação Linfocitária/imunologia , Mitocôndrias/ultraestrutura , Linfócitos T/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Humanos , Células Jurkat , Microscopia de Fluorescência , Proteína ORAI1 , Técnicas de Patch-Clamp , Linfócitos T/citologia , Linfócitos T/imunologia
4.
Proc Natl Acad Sci U S A ; 104(36): 14418-23, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17726106

RESUMO

T helper (Th) cell activation is required for the adaptive immune response. Formation of the immunological synapse (IS) between Th cells and antigen-presenting cells is essential for Th cell activation. IS formation induces the polarization and redistribution of many signaling molecules; however, very little is known about organelle redistribution during IS formation in Th cells. We show that formation of the IS induced cytoskeleton-dependent mitochondrial redistribution to the immediate vicinity of the IS. Using total internal reflection microscopy, we found that upon stimulation, the distance between the IS and mitochondria was decreased to values<200 nm. Consequently, mitochondria close to the IS took up more Ca2+ than the ones farther away from the IS. The redistribution of mitochondria to the IS was necessary to maintain Ca2+ influx across the plasma membrane and Ca2+-dependent Th cell activation. Our results suggest that mitochondria are part of the signaling complex at the IS and that their localization close to the IS is required for Th cell activation.


Assuntos
Ativação Linfocitária/imunologia , Mitocôndrias/metabolismo , Sinapses/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Cálcio/metabolismo , Linhagem Celular , Proliferação de Células , Humanos , Microscopia Eletrônica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/citologia
5.
J Biol Chem ; 281(52): 40302-9, 2006 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-17056596

RESUMO

A rise of the intracellular Ca(2+) concentration has multiple signaling functions. Sustained Ca(2+) influx across plasma membrane through calcium release-activated calcium (CRAC) channels is required for T-cell development in the thymus, gene transcription, and proliferation and differentiation of naïve T-cells into armed effectors cells. Intracellular Ca(2+) signals are shaped by mitochondria, which function as a highly dynamic Ca(2+) buffer. However, the precise role of mitochondria for Ca(2+)-dependent T-cell activation is unknown. Here we have shown that mitochondria are translocated to the plasma membrane as a consequence of Ca(2+) influx and that this directed movement is essential to sustain Ca(2+) influx through CRAC channels. The decreased distance between mitochondria and the plasma membrane enabled mitochondria to take up large amounts of inflowing Ca(2+) at the plasma membrane, thereby preventing Ca(2+)-dependent inactivation of CRAC channels and sustaining Ca(2+) signals. Inhibition of kinesin-dependent mitochondrial movement along microtubules abolished mitochondrial translocation and reduced sustained Ca(2+) signals. Our results show how a directed movement of mitochondria is used to control important cellular functions such as Ca(2+)-dependent T-cell activation.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico Ativo/fisiologia , Cálcio/fisiologia , Canais de Cálcio/química , Sinalização do Cálcio/fisiologia , Humanos , Células Jurkat , Cinesinas/fisiologia , Microtúbulos , Mitocôndrias/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...