Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10870, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035317

RESUMO

In recent years the intermetallic ternary RE2MgGe2 (RE = rare earth) compounds attract interest in a variety of technological areas. We therefore investigate in the present work the structural, electronic, magnetic, and thermodynamic properties of Nd2MgGe2 and Gd2MgGe2. Spin-orbit coupling is found to play an essential role in realizing the antiferromagnetic ground state observed in experiments. Both materials show metallicity and application of a Debye-Slater model demonstrates low thermal conductivity and little effects of the RE atom on the thermodynamic behavior.

2.
Sci Rep ; 8(1): 17689, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30523269

RESUMO

The electronic band structure of bilayer graphene is studied systematically in the presence of substitutional B and/or N doping, using density functional theory with van der Waals correction. We show that introduction of B-N pairs into bilayer graphene can be used to create a substantial band gap, stable against thermal fluctuations at room temperature, but otherwise leaves the electronic band structure in the vicinity of the Fermi energy largely unaffected. Introduction of B-N pairs into B and/or N doped bilayer graphene likewise hardly modifies the band dispersions. In semiconducting systems (same amount of B and N dopants), however, the size of the band gap is effectively tuned in the presence of B-N pairs.

3.
Sci Rep ; 6: 31821, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27550632

RESUMO

We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light.

4.
J Phys Condens Matter ; 28(38): 385302, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27460419

RESUMO

We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the light's polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity [Formula: see text] at zero Fermi energy, to a Hall insulator state with [Formula: see text]. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at [Formula: see text].

5.
Phys Chem Chem Phys ; 18(28): 19158-64, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27362417

RESUMO

We quantify the low lattice thermal conductivity in layered BiCuSeO (the oxide with the highest known figure of merit). It turns out that the scattering of acoustical into optical phonons is strongly enhanced in the material because of the special structure of the phonon dispersion. For example, at room temperature the optical phonons account for an enormous 42% of the lattice thermal conductivity. We also quantify the anisotropy of the lattice thermal conductivity and determine the distribution of the mean free path of the phonons at different temperatures to provide a guide for tuning the thermal properties.

6.
Sci Rep ; 6: 26753, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225324

RESUMO

A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

7.
Nanoscale ; 8(19): 10310-5, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27127889

RESUMO

An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.

8.
Nanoscale ; 7(45): 19231-40, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26525140

RESUMO

We present a combination of density functional theory and of both non-equilibrium Green's function formalism and a Master equation approach to accurately describe quantum transport in molecular junctions in the Coulomb blockade regime. We apply this effective first-principles approach to reproduce the experimental results of Perrin et al., [Nat. Nanotechnol., 2013, 8, 282] for the transport properties of a Au-(Zn)porphyrin-Au molecular junction. We demonstrate that energy level renormalization due to the image charge effect is crucial to the prediction of the current onset in the current-voltage, I-V, curves as a function of electrode separation. Furthermore, we show that for voltages beyond that setting the current onset, the slope of the I-V characteristics is determined by the interaction of the charge carriers with molecular vibrations. This corresponds to current-induced local heating, which may also lead to an effective reduced electronic coupling. Overall our scheme provides a fully ab initio description of quantum transport in the Coulomb blockade regime in the presence of electron-vibron coupling.

9.
Sci Rep ; 5: 13762, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26323361

RESUMO

We investigate the thickness dependence of the structural, electronic, and magnetic properties of (LaMnO3)n/(SrTiO3)m (n, m = 2, 4, 6, 8) superlattices using density functional theory. The electronic structure turns out to be highly sensitive to the onsite Coulomb interaction. In contrast to bulk SrTiO3, strongly distorted O octahedra are observed in the SrTiO3 layers with a systematic off centering of the Ti atoms. The systems favour ferromagnetic spin ordering rather than the antiferromagnetic spin ordering of bulk LaMnO3 and all show half-metallicity, while a systematic reduction of the minority spin band gaps as a function of the LaMnO3 and SrTiO3 layer thicknesses originates from modifications of the Ti dxy states.

10.
Sci Rep ; 4: 4909, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24809804

RESUMO

Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects Ci(SiI), CiOi, CiCs, and CiOi(SiI) with respect to the Fermi energy for all possible charge states. The Ci(SiI)(2+) state dominates in almost the whole Fermi energy range. The unpaired electron in the CiOi(+) state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the CiCs pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the CiOi(SiI) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies.


Assuntos
Carbono/química , Silício/química , Silício/efeitos da radiação , Estrutura Molecular
11.
Phys Chem Chem Phys ; 16(22): 10891-6, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24763397

RESUMO

Open-framework germanates are a group of germanium oxides with a well-defined porous structure, suitable for ion-exchange and gas adsorption applications. Recently, Ni incorporation into the porous structure by establishing Ge-O-Ni bonds with the molecular complexes [Ni(H2N(CH2)2NH2)2] was realized. We investigate the optical and electronic features of these systems (SUT-1 and SUT-2) from first principles. To describe the photophysical behavior, we analyze the bonding between the Ni and nearest-neighboring atoms and simulate the absorption spectra. Because of their optical characteristics, germania-based nanomaterials are expected to be essential components of future optical and electronic devices. We discuss to what extent molecular transition-metal complexes embedded into porous germanium oxide can modify the optical response to potentially expand the area of applications.

12.
Phys Chem Chem Phys ; 16(18): 8487-92, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24667874

RESUMO

Hybrid density functional theory is used to gain insights into the interaction of intrinsic vacancies (V) and oxygen-vacancy pairs (VO, known as A-centres) with the dopants (D) germanium (Ge), tin (Sn), and lead (Pb) in silicon (Si). We determine the structures as well as binding and formation energies of the DVO and DV complexes. The results are discussed in terms of the density of states and in view of the potential of isovalent doping to control A-centres in Si. We argue that doping with Sn is the most efficient isovalent doping strategy to suppress A-centres by the formation of SnVO complexes, as these are charge neutral and strongly bound.

13.
Sci Rep ; 4: 4390, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24633155

RESUMO

Density functional theory is used to investigate the thermoelectric properties of the 3R phases of NaxRhO2 for different Na vacancy configurations and concentrations. As compared to the analogous 2H phases, the modified stacking of the atomic layers in the 3R phases reduces the interlayer coupling. As a consequence, the 3R phases are found to be superior in the technologically relevant temperature range. The Rh d(3z(2)-r(2)) orbitals still govern the valence band maxima and therefore determine the transport properties. A high figure of merit of 0.35 is achieved in hydrated Na0.83RhO2 at 580 K by water intercalation, which is 34% higher than in the non-hydrated phase.

14.
Sci Rep ; 4: 4035, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24531805

RESUMO

Electron transport through a quantum dot or single molecule coupled to a quantum oscillator is studied by the Keldysh nonequilibrium Green's function formalism to obtain insight into the quantum dynamics of the electronic and oscillator degrees of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate voltage. Novel spectral features are identified for the ground and excited states of nanomechanical oscillators that can be used to enhance the measurement sensitivity.

15.
Sci Rep ; 3: 3409, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24296477

RESUMO

Cation intermixing at the n-type polar LaGaO3/SrTiO3 (001) interface is investigated by first principles calculations. Ti⇔Ga, Sr⇔La, and SrTi⇔LaGa intermixing are studied in comparison to each other, with a focus on the interface stability. We demonstrate in which cases intermixing is energetically favorable as compared to a clean interface. A depopulation of the Ti 3dxy orbitals under cation intermixing is found, reflecting a complete suppression of the two-dimensional electron gas present at the clean interface.

16.
Sci Rep ; 3: 3192, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24217156

RESUMO

We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice realizes the characteristic physical phenomena of free-standing silicene. In particular, we address by model calculations the combined effect of the intrinsic spin-orbit coupling and an external electric field, which induces a transition from a semimetal to a topological insulator and further to a band insulator.

17.
J Chem Phys ; 138(13): 134317, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23574237

RESUMO

Dispersion coefficients for the long-range interactions of the first four excited states of He, i.e., He(2 (1, 3)S) and He(2 (1, 3)P), with the low-lying states of the alkaline earth atoms Mg, Ca, and Sr are calculated by summing over the reduced matrix elements of multipole transition operators.

18.
Phys Chem Chem Phys ; 15(20): 7599-603, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23588997

RESUMO

The study of the structure and properties of zirconium hydrides is important for understanding the embrittlement of zirconium alloys used as cladding in light water nuclear reactors. Simulation of the defect processes is complicated due to the random distribution of the hydrogen atoms. We propose the use of the special quasirandom structure approach as a computationally efficient way to describe this random distribution. We have generated six special quasirandom structure cells based on face centered cubic and face centered tetragonal unit cells to describe ZrH(2-x) (x = 0.25-0.5). Using density functional theory calculations we investigate the mechanical properties, stability, and electronic structure of the alloys.

19.
Sci Rep ; 3: 1261, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405275

RESUMO

We present a theoretical study of the quantum magnetocapacitance of an ultrathin topological insulator film in an external magnetic field. The study is undertaken to investigate the interplay of the Zeeman interaction with the hybridization between the upper and lower surfaces of the thin film. Determining the density of states, we find that the electron-hole symmetry is broken when the Zeeman and hybridization energies are varied relative to each other. This leads to a change in the character of the magnetocapacitance at the charge neutrality point. We further show that in the presence of both Zeeman interaction and hybridization the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high perpendicular magnetic field. In addition, we address the crossover from perpendicular to parallel magnetic field and find consistency with recent experimental data.

20.
Sci Rep ; 3: 1075, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23355947

RESUMO

The electronic properties of silicene are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit interaction and the buckled structure. Silicene has the potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that the combination of an electric field with intrinsic spin orbit interaction leads to quantum phase transitions at the charge neutrality point, providing a tool to experimentally tune the topological state. Silicene constitutes a model system for exploring the spin and valley physics not accessible in graphene due to the small spin orbit interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA