Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Clin Oncol ; 15(4): 566-575, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38689628

RESUMO

BACKGROUND: Low-grade myofibroblastic sarcoma (LGMS) is an extremely rare tumor characterized by the malignant proliferation of myofibroblasts. LGMS most commonly develops in adults, predominantly in males, in the head and neck region, oral cavity, especially on the tongue, mandible, and larynx. This article presents 2 cases of LGMS localized to the maxillary sinus and provides an overview of the available literature. CASE SUMMARY: Two patients with LGMS located in the maxillary sinus underwent surgery at the Department of Head and Neck Surgery. Case 1: A 46-year-old patient was admitted to the clinic with suspected LGMS recurrence in the right maxillary sinus (rT4aN0M0), with symptoms of pain in the suborbital area, watering of the right eye, thick discharge from the right nostril, and augmented facial asymmetry. After open biopsy-confirmed LGMS, the patient underwent expanded maxillectomy of the right side with immediate palate reconstruction using a microvascular skin flap harvested surgically from the middle arm. The patient qualified for adjuvant radiotherapy for the postoperative bed, with an additional margin. Currently, the patient is under 1.5 years of observation with no evidence of disease. Case 2: A 45-year-old man was admitted to our clinic with facial asymmetry, strabismus, exophthalmos, and visual impairment in the right eye. Six months earlier, the patient had undergone partial jaw resection at another hospital for fibromatosis. A contrast-enhanced computed tomography scan revealed a tumor mass in the postoperative log after an earlier procedure. An open biopsy confirmed low-grade fibrosarcoma (rT4aN0M0). The patient qualified for an extended total right maxillectomy with orbital excision and right hemimandibulectomy with immediate microvascular reconstruction using an anterolateral thigh flap. The patient subsequently underwent adjuvant radiotherapy to the postoperative area. After 9 months, recurrence occurred in the right mandibular arch below the irradiated area. The lesion infiltrated the base of the skull, which warranted the withdrawal of radiotherapy and salvage surgery. The patient qualified for palliative chemotherapy with a regimen of doxorubicin + dacarbazine + cyclophosphamide and palliative radiotherapy for bone metastases. The patient died 26 months after surgical treatment. The cases have been assessed and compared with cases in the literature. CONCLUSION: No specific diagnostic criteria or treatment strategies have been developed for LGMS. The treatment used for LGMS is the same as that used for sinonasal cancer radical tumor excision; adjuvant radiotherapy or chemoradiotherapy should also be considered. They have low malignant potential but are highly invasive, tend to recur, and metastasize to distant sites. Patients should undergo regular follow-up examinations to detect recurrence or metastasis at an early stage. Patients should be treated and observed at the highest referral centers.

2.
Materials (Basel) ; 16(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241392

RESUMO

BACKGROUND: The use of nanotechnology in the production of medical equipment has opened new possibilities to fight bacterial biofilm developing on their surfaces, which can cause infectious complications. In this study, we decided to use gentamicin nanoparticles. An ultrasonic technique was used for their synthesis and immediate deposition onto the surface of tracheostomy tubes, and their effect on bacterial biofilm formation was evaluated. METHODS: Polyvinyl chloride was functionalized using oxygen plasma followed by sonochemical formation and the embedment of gentamicin nanoparticles. The resulting surfaces were characterized with the use of AFM, WCA, NTA, FTIR and evaluated for cytotoxicity with the use of A549 cell line and for bacterial adhesion using reference strains of S. aureus (ATCC® 25923™) and E. coli (ATCC® 25922™). RESULTS: The use of gentamicin nanoparticles significantly reduced the adhesion of bacterial colonies on the surface of the tracheostomy tube for S. aureus from 6 × 105 CFU/mL to 5 × 103 CFU/mL and for E. coli from 1.655 × 105 CFU/mL to 2 × 101 CFU/mL, and the functionalized surfaces did not show a cytotoxic effect on A549 cells (ATTC CCL 185). CONCLUSIONS: The use of gentamicin nanoparticles on the polyvinyl chloride surface may be an additional supporting method for patients after tracheostomy in order to prevent the colonization of the biomaterial by potentially pathogenic microorganisms.

3.
Microorganisms ; 10(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744728

RESUMO

Background: Bacterial biofilm on the surface of tracheostomy tubes (TTs) is a potential reservoir of potentially pathogenic bacteria, including S. aureus. For this reason, our study aimed to investigate biofilm production in vitro and the presence of icaAD and MSCRAMM genes in clinical S. aureus strains derived from TTs, with respect to antibiotic resistance and genetic variability. Methods: The clonality of the S. aureus strains was analyzed by the PFGE method. The assessment of drug resistance was based on the EUCAST recommendations. The isolates were evaluated for biofilm production by the microtiter plate method and the slime-forming ability was tested on Congo red agar (CRA). The presence of icaAD genes was investigated by PCR and MSCRAMM genes were detected by multiplex PCR. Results: A total of 60 patients were enrolled in the study. One TT was obtained from each patient (n = 60). Twenty-one TTs (35%) were colonized with S. aureus. A total of 24 strains were isolated as 3 patients showed colonization with 2 SA clones (as confirmed by PFGE). PFGE showed twenty-two unique molecular profiles. Two isolates (8%) turned out to be MRSA, but 50% were resistant to chloramphenicol, 25% to erythromycin and 8% to clindamycin (two cMLSB and four iMLSB phenotypes were detected). The microtiter plate method with crystal violet confirmed that 96% of the strains were biofilm formers. Representative strains were visualized by SEM. All isolates had clfAB, fnbA, ebpS and icaAD. Different MSCRAMM gene combinations were observed. Conclusions: the present study showed that the S. aureus isolated from the TTs has a high diversity of genotypes, a high level of antibiotic resistance and ability to produce biofilm.

4.
Otolaryngol Pol ; 76(5): 1-13, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36622125

RESUMO

<b>Introduction:</b> In hospitalized patients, tracheostomy tubes (TTs) are susceptible to colonization by biofilm- producing potentially pathogenic microorganisms (PPMs). Contact with TTs, which are situated in a critical region of the body with enormous microbial exposure, may lead to the emer-gence of resistant respiratory infections.</br></br> <b>Objective:</b> Our study aimed to isolate and identify Gram-positive and Gram-negative PPMs, mark their antibiotic resistance and determine the bacteriological pattern of the biofilm colonizing the TTs. </br></br> <b>Methods:</b> The study was conducted on 45 tracheostomy tubes obtained from 45 hospitalized adult patients with tracheostomy with intubation periods ranging from 1 to 28 days. Tracheal aspirates (TA) obtained from polyvinyl chloride (PVC) TTs were used for the analysis. Bacteria in biofilms were identified by standard microbiological techniques, tested for antibiotic resistance and phenotypic resistance according to the EUCAST guidelines and visualized by SEM.</br></br> <b>Results:</b> Out of 45 TTs, 100% were found to be positive in bacterial cultures with 58 PPM isolates (10 spe-cies) correlating well with the SEM findings. Overall, 72% of isolates were Gram-negative bacilli, followed by Gram-positive cocci (28%). Staphylococcus aureus was the predominant bacterium (identified in 35.5% of patients), followed by Klebsiella pneumoniae (identified in 23.8%). Among the Gram-negative PPMs, 50% of isolates were identified as multidrug-resistant (MDR), 8.6% as extremely drug-resistant (XDR) and 5.2% were pandrug-resistant (PDR).</br></br><b>Conclusions:</b> Our study showed a rapid colonization of the TT surface by biofilm- producing PPMs. Patients with tracheosto- mies, also those with non-infectious conditions, were mainly colonized with highly re-sistant bacteria.


Assuntos
Bactérias Gram-Negativas , Traqueostomia , Adulto , Humanos , Staphylococcus aureus , Farmacorresistência Bacteriana Múltipla , Biofilmes
5.
Pathogens ; 10(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684294

RESUMO

(1) Background: Due to the commonness of tracheotomy procedures and the wide use of biomaterials in the form of tracheostomy tubes (TTs), the problem of biomaterial-associated infections (BAIs) is growing. Bacterial colonization of TTs results in the development of biofilms on the surface of biomaterials, which may contribute to the development of invasive infections in tracheostomized patients. (2) Methods: Clinical strains of K. pneumoniae, isolated from TTs, were characterized according to their ability to form biofilms, as well as their resistance to antibiotics, whether they harbored ESßL genes, the presence of selected virulence factors and genetic diversity. (3) Results: From 53 patients, K. pneumoniae were detected in 18 of the TTs examined, which constituted 34% of all analyzed biomaterials. Three of the strains (11%) were ESßL producers and all had genes encoding CTX-M-1, SHV and TEM enzymes. 44.4% of isolates were biofilm formers, SEM demonstrating that K. pneumoniae formed differential biofilms on the surface of polyethylene (PE) and polyvinyl chloride (PVC) TTs in vitro. A large range of variation in the share of fimbrial genes was observed. PFGE revealed sixteen genetically distinct profiles. (4) Conclusions: Proven susceptibility of TT biomaterials to colonization by K. pneumoniae means that the attention of research groups should be focused on achieving a better understanding of the bacterial pathogens that form biofilms on the surfaces of TTs. In addition, research efforts should be directed at the development of new biomaterials or the modification of existing materials, in order to prevent bacterial adhesion to their surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...