Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Eur J Radiol ; 177: 111547, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852329

RESUMO

BACKGROUND: Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and ML have emerged as promising tools in medical imaging, including neuroradiology. This systematic review and meta-analysis aimed to evaluate the methodological quality of studies employing radiomics for atherosclerotic carotid artery disease analysis and ML algorithms for culprit plaque identification using CT or MRI. MATERIALS AND METHODS: Pubmed, WoS and Scopus databases were searched for relevant studies published from January 2005 to May 2023. RQS assessed methodological quality of studies included in the review. QUADAS-2 assessed the risk of bias. A meta-analysis and three meta regressions were conducted on study performance based on model type, imaging modality and segmentation method. RESULTS: RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for a single study with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques had a satisfactory performance, with an AUC of 0.85, surpassing clinical models. However, combining radiomics with clinical features yielded the highest AUC of 0.89. Meta-regression analyses confirmed these findings. MRI-based models slightly outperformed CT-based ones, but the difference was not significant. CONCLUSION: In conclusion, radiomics and ML hold promise for assessing carotid plaque vulnerability, aiding in early cerebrovascular event prediction. Combining radiomics with clinical data enhances predictive performance.


Assuntos
Doenças das Artérias Carótidas , Humanos , Doenças das Artérias Carótidas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Placa Aterosclerótica/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Radiômica
3.
Eur J Radiol ; 176: 111497, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749095

RESUMO

Carotid atherosclerosis plays a substantial role in cardiovascular morbidity and mortality. Given the multifaceted impact of this disease, there has been increasing interest in harnessing artificial intelligence (AI) and radiomics as complementary tools for the quantitative analysis of medical imaging data. This integrated approach holds promise not only in refining medical imaging data analysis but also in optimizing the utilization of radiologists' expertise. By automating time consuming tasks, AI allows radiologists to focus on more pertinent responsibilities. Simultaneously, the capacity of AI in radiomics to extract nuanced patterns from raw data enhances the exploration of carotid atherosclerosis, advancing efforts in terms of (1) early detection and diagnosis, (2) risk stratification and predictive modeling, (3) improving workflow efficiency, and (4) contributing to advancements in research. This review provides an overview of general concepts related to radiomics and AI, along with their application in the field of carotid vulnerable plaque. It also offers insights into various research studies conducted on this topic across different imaging techniques.


Assuntos
Inteligência Artificial , Doenças das Artérias Carótidas , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Doenças das Artérias Carótidas/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Radiômica
4.
Neuroradiol J ; : 19714009241252623, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718167

RESUMO

INTRODUCTION: In the current paper, the "carotid artery calcium score" method is presented with the target to offer a metric method to quantify the amount of calcification in the carotid artery. MODEL AND DEFINITION: The Volume of Interest (VOI) should be extracted and those voxels, with a Hounsfield Unit (HU) value ≥130, should be considered. The total weight value is determined by calculating the sum of the HU attenuation values of all voxels with values ≥130 HU. This value should be multiplied by the conversion factor ("or voxel size") and divided by a weighting factor, the attenuation threshold to consider a voxel as calcified (and therefore 130 HU): this equation determines the Carotid Artery Calcium Score (CACS). RESULTS: In order to provide the demonstration of the potential feasibility of the model, the CACS was calculated in 131 subjects (94 males; mean age 72.7 years) for 235 carotid arteries (in 27 subjects, unilateral plaque was present) considered. The CACS value ranged from 0.67 to 11716. A statistically significant correlation was found (rho value = 0.663, p value = .0001) between the CACS in the right and left carotid plaques. Moreover, a statistically significant correlation between the age and the total CACS was present (rho value = 0.244, p value = .005), whereas no statistically significant difference was found in the distribution of CACS by gender (p = .148). The CACS was also tested at baseline and after contrast and no statistically significant difference was found. CONCLUSION: In conclusion, this method is of easy application, and it weights at the same time the volume and the degree of calcification in a unique parameter. This method needs to be tested to verify its potential utility, similar to the coronary artery calcium score, for the risk stratification of the occurrence of cerebrovascular events of the anterior circulation. Further studies using this new diagnostic tool to determine the prognostic value of carotid calcium quantification are needed.

5.
Life (Basel) ; 14(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38255688

RESUMO

Carotid artery stenosis is a major cause of morbidity and mortality. The journey to understanding carotid disease has developed over time and radiology has a pivotal role in diagnosis, risk stratification and therapeutic management. This paper reviews the history of diagnostic imaging in carotid disease, its evolution towards its current applications in the clinical and research fields, and the potential of new technologies to aid clinicians in identifying the disease and tailoring medical and surgical treatment.

6.
Circulation ; 149(3): 251-266, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227718

RESUMO

Coronary artery calcification (CAC) accompanies the development of advanced atherosclerosis. Its role in atherosclerosis holds great interest because the presence and burden of coronary calcification provide direct evidence of the presence and extent of coronary artery disease; furthermore, CAC predicts future events independently of concomitant conventional cardiovascular risk factors and to a greater extent than any other noninvasive biomarker of this disease. Nevertheless, the relationship between CAC and the susceptibility of a plaque to provoke a thrombotic event remains incompletely understood. This review summarizes the current understanding and literature on CAC. It outlines the pathophysiology of CAC and reviews laboratory, histopathological, and genetic studies, as well as imaging findings, to characterize different types of calcification and to elucidate their implications. Some patterns of calcification such as microcalcification portend increased risk of rupture and cardiovascular events and may improve prognosis assessment noninvasively. However, contemporary computed tomography cannot assess early microcalcification. Limited spatial resolution and blooming artifacts may hinder estimation of degree of coronary artery stenosis. Technical advances such as photon counting detectors and combination with nuclear approaches (eg, NaF imaging) promise to improve the performance of cardiac computed tomography. These innovations may speed achieving the ultimate goal of providing noninvasively specific and clinically actionable information.


Assuntos
Aterosclerose , Calcinose , Doença da Artéria Coronariana , Calcificação Vascular , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/complicações , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Angiografia Coronária/métodos , Medição de Risco , Aterosclerose/patologia , Calcinose/diagnóstico por imagem , Calcinose/patologia , Calcificação Vascular/patologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...