Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 9(10): 2203-10, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24051431

RESUMO

The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).


Assuntos
Biologia Molecular/métodos , Tecnologia Farmacêutica/métodos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Animais , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Feminino , Instabilidade Genômica , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Pseudorraiva/prevenção & controle , Vacinas contra Pseudorraiva/genética , Vacinas contra Pseudorraiva/imunologia , Seleção Genética
2.
Vet Res ; 44: 53, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23865540

RESUMO

Cyprinid herpesvirus 3 (CyHV-3), a member of the family Alloherpesviridae, is the causative agent of a lethal disease in common and koi carp. CyHV-3 ORF134 encodes an interleukin-10 (IL-10) homologue. The present study was devoted to this ORF. Transcriptomic analyses revealed that ORF134 is expressed as a spliced gene belonging to the early-late class. Proteomic analyses of CyHV-3 infected cell supernatant demonstrated that the ORF134 expression product is one of the most abundant proteins of the CyHV-3 secretome. To investigate the role of ORF134 in viral replication in vitro and in virulence in vivo, a deleted strain and a derived revertant strain were produced using BAC cloning technologies. The recombinant ORF134 deleted strain replicated in vitro comparably to the parental and the revertant strains. Infection of fish by immersion in water containing the virus induced comparable CyHV-3 disease for the three virus genotypes tested (wild type, deleted and revertant). Quantification of viral DNA by real time TaqMan PCR (in the gills and the kidney) and analysis of carp cytokine expression (in the spleen) by RT-qPCR at different times post-infection did not revealed any significant difference between the groups of fish infected with the three virus genotypes. Similarly, histological examination of the gills and the kidney of infected fish revealed no significant differences between fish infected with ORF134 deleted virus versus fish infected with the control parental or revertant strains. All together, the results of the present study demonstrate that the IL-10 homologue encoded by CyHV-3 is essential neither for viral replication in vitro nor for virulence in common carp.


Assuntos
Carpas , Infecções por Vírus de DNA/veterinária , Vírus de DNA/fisiologia , Vírus de DNA/patogenicidade , Doenças dos Peixes/virologia , Interleucina-10/genética , Animais , Citocinas/genética , Citocinas/metabolismo , Infecções por Vírus de DNA/virologia , DNA Viral/genética , DNA Viral/metabolismo , Regulação da Expressão Gênica , Brânquias/metabolismo , Interleucina-10/metabolismo , Rim/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Baço/metabolismo , Virulência , Replicação Viral
3.
Nature ; 456(7220): 339-43, 2008 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19020613

RESUMO

The kidney has an important role in the regulation of acid-base homeostasis. Renal ammonium production and excretion are essential for net acid excretion under basal conditions and during metabolic acidosis. Ammonium is secreted into the urine by the collecting duct, a distal nephron segment where ammonium transport is believed to occur by non-ionic NH(3) diffusion coupled to H(+) secretion. Here we show that this process is largely dependent on the Rhesus factor Rhcg. Mice lacking Rhcg have abnormal urinary acidification due to impaired ammonium excretion on acid loading-a feature of distal renal tubular acidosis. In vitro microperfused collecting ducts of Rhcg(-/-) acid-loaded mice show reduced apical permeability to NH(3) and impaired transepithelial NH(3) transport. Furthermore, Rhcg is localized in epididymal epithelial cells and is required for normal fertility and epididymal fluid pH. We anticipate a critical role for Rhcg in ammonium handling and pH homeostasis both in the kidney and the male reproductive tract.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Fertilidade/fisiologia , Rim/fisiologia , Glicoproteínas de Membrana/metabolismo , Compostos de Amônio Quaternário/urina , Acidose/fisiopatologia , Ácidos/metabolismo , Animais , Transporte Biológico , Líquidos Corporais , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Células Epiteliais/metabolismo , Deleção de Genes , Genitália Masculina/citologia , Genitália Masculina/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Túbulos Renais Coletores/fisiologia , Túbulos Renais Distais/fisiologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Permeabilidade , Estresse Fisiológico , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...