Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 19(11): 10824-33, 2011 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-21643339

RESUMO

We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode with a Mode-Field-Diameter (MFD) of 59µm. We further demonstrate high pulse energy Second-Harmonic-Generation (SHG) and Third Harmonic Generation (THG) using a simple Q-switched single-stage rod fiber laser cavity architecture reaching pulse energies up to 1mJ at 515nm and 0.5mJ at 343nm.

2.
Opt Express ; 19(8): 7398-409, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21503050

RESUMO

Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving SM LMA rod fibers by using a photonic bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50 cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field diameter of ~59 µm at 1064 nm and exhibits a pump absorption of 27 dB/m at 976 nm.

3.
Opt Express ; 18(8): 8229-38, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20588669

RESUMO

We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm by applying an electric field to the silicon assembly.

4.
Opt Express ; 17(5): 3754-64, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19259216

RESUMO

We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability of the device is achieved by varying the amplitude and the frequency of the applied external electric field. The threshold voltage for doped and undoped liquid crystals in a silica capillary and in a glass cell are also measured as a function of the frequency of the external electric field and the achieved results are compared.

5.
Opt Express ; 17(6): 4442-53, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19293872

RESUMO

A simulation scheme for the transmission spectrum of a photonic crystal fiber infiltrated with a nematic liquid crystal and subject to an external bias is presented. The alignment of the biased liquid crystal is simulated using the finite element method to solve the relevant system of coupled partial differential equations. From the liquid crystal alignment the full tensorial dielectric permittivity in the capillaries is derived. The transmission spectrum for the photonic crystal fiber is obtained by solving the generalized eigenvalue problem deriving from Maxwell's equations using a vector element based finite element method. We demonstrate results for a splay aligned liquid crystal infiltrated into the capillaries of a four-ring photonic crystal fiber and compare them to corresponding experiments.

6.
Appl Opt ; 48(3): 497-503, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19151818

RESUMO

We infiltrate photonic crystal fibers with a negative dielectric anisotropy liquid crystal. A 396 nm bandgap shift is obtained in the temperature range of 22-80 degrees C, and a 67 nm shift of long-wavelength bandgap edge is achieved by applying a voltage of 200 Vrms. The polarization sensitivity and corresponding activation loss are measured using polarized light and a full broadband polarization control setup. The electrically induced phase shift on the Poincaré sphere and corresponding birefringence change are also measured. According to the results, tunable wave plates working in the wavelength range of 1520-1580 nm and a potential for realizing a polarimeter working at the 1310 nm region are experimentally demonstrated.

7.
Opt Express ; 16(24): 20067-72, 2008 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19030092

RESUMO

This paper reports on the first application of a liquid crystal infiltrated photonic bandgap fiber used as a tunable filter in an optical transmission system. The device allows low-cost amplified spontaneous emission (ASE) noise filtering and gain equalization with low insertion loss and broad tunability. System experiments show that the use of this filter increases for times the distance over which the optical signal-to-noise ratio (OSNR) is sufficient for error-free transmission with respect to the case in which no filtering is used.

8.
Opt Lett ; 33(9): 986-8, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451961

RESUMO

We demonstrate a highly tunable deep notch filter realized in a liquid-crystal photonic-bandgap (LCPBG) fiber. The filter is realized without inducing a long-period grating in the fiber but simply by filling a solid-core photonic-crystal fiber with a liquid crystal and exploiting avoided crossings within the bandgap of the LCPBG fiber. The filter is demonstrated experimentally and investigated using numerical simulations. A high degree of tuning of the spectral position of the deep notch is also demonstrated.

9.
Opt Express ; 15(13): 7901-12, 2007 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19547117

RESUMO

We demonstrate electrically and mechanically induced long period gratings (LPGs) in a photonic crystal fiber (PCF) filled with a high-index liquid crystal. The presence of the liquid crystal changes the guiding properties of the fiber from an index guiding fiber to a photonic bandgap guiding fiber - a so called liquid crystal photonic bandgap (LCPBG) fiber. Both the strength and resonance wavelength of the gratings are highly tunable. By adjusting the amplitude of the applied electric field, the grating strength can be tuned and by changing the temperature, the resonance wavelength can be tuned as well. Numerical calculations of the higher order modes of the fiber cladding are presented, allowing the resonance wavelengths to be calculated. A high polarization dependent loss of the induced gratings is also observed.

10.
Opt Express ; 13(19): 7483-96, 2005 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-19498773

RESUMO

We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this one is its continuous tunability due to the fact that the used LC does not exhibit reverse tilt domain defects and threshold effects. Furthermore, the dual-frequency features of the LC enables electrical control of the spectral position of the bandgaps towards both shorter and longer wavelengths in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...