Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Horm Metab Res ; 46(9): 609-14, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24554535

RESUMO

Physical exercise represents an alternative way to prevent and/or ameliorate chronic metabolic diseases. Disruption of sympathetic nervous system (SNS) activity contributes to adiposity in obese subjects. Here, we verified the preventive effect of swimming training upon adiposity, adrenal catecholamine storage, and pancreatic islet function in obese monosodium glutamate (MSG)-treated rats. Male neonatal Wistar rats received MSG (4 mg/g body weight) during the first 5 days of life and, at weaning, half of the rats were submitted to swimming training, 30 min/day, 3 days a week, until 90 days of age (exercised rats: MSGex). Half of the rats were used as controls (sedentary group, MSGsd). Exercise training (ET) decreased insulinemia and fat deposition in MSGex, and increased adrenal catecholamine content, compared with MSGsd rats. Insulinemia during the ivGTT was lower in MSGex rats, despite a lack of difference in glycemia. Swimming training enhanced insulin release in islets challenged by 2.8-8.3 mmol/l glucose, whereas, at supraphysiological glucose concentrations (11.1-16.7 mmol/l), MSGex islets secreted less insulin than MSGsd. No differences in insulin secretion were observed following l-arginine (Arg) or K(+) stimuli. In contrast, islets from MSGex rats secreted more insulin when exposed to carbachol (100 µmol/l), forskolin (10 µmol/l), or IBMX (1 mmol/l) at 8.3 mmol/l glucose. Additionally, MSGex islets presented a better epinephrine inhibition upon insulin release. These results demonstrate that ET prevented the onset of obesity in MSG rats, probably by enhancing adrenal catecholamine levels. ET ameliorates islet responsiveness to several compounds, as well as insulin peripheral action.


Assuntos
Terapia por Exercício , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Glutamato de Sódio/efeitos adversos , Animais , Exercício Físico , Humanos , Insulina/metabolismo , Secreção de Insulina , Masculino , Obesidade/fisiopatologia , Ratos , Ratos Wistar , Glutamato de Sódio/metabolismo , Natação , Desmame
2.
J Neuroendocrinol ; 23(2): 148-57, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21091554

RESUMO

Protein restriction during lactation has been suggested to diminish parasympathetic activity, whereas sympathetic activity is enhanced in adult rats. The present study analyses whether dysfunction of the autonomic nervous system is involved in the impairment of insulin secretion from perinatally undernourished rats. Male neonates were reared by mothers fed a low- (4%) protein (LP group) or normal- (23%) protein diet (NP group). At 81 days of age, LP rats showed less body mass than NP rats (318 ± 4 g versus 370 ± 5 g) (P < 0.001). Fat tissue accumulation decreased in LP [0.8 ± 0.03 g/100 g body weight (BW)] compared to NP rats (1.1 ± 0.04 g/100 g BW) (P < 0.001). LP were glucose-intolerant as registered by the area under the curve of an i.v. glucose tolerance test (37 ± 3) compared to NP rats (29 ± 2) (P < 0.05); however, LP animals showed fasting normoglycaemia (LP, 5.0 ± 0.1; NP, 4.9 ± 0.03 mm) and hypoinsulinaemia (LP, 0.10 ± 0.02 ng/ml; NP, 0.17 ± 0.02 ng/ml). LP also showed glucose tissue uptake 60% higher than NP rats (P < 0.05). Vagus firing rate from LP was lower (7.1 ± 0.8 spikes/5 s) than that in NP rats (12.3 ± 0.7 spikes/5 s) (P < 0.001); however, there was no difference in sympathetic nervous activity. The cholinergic insulinotrophic effect was lower in pancreatic islets from LP (0.07 ± 0.01 ng/min/islet) than in NP rats (0.3 ± 0.06 ng/min/islet), whereas the levels of adrenaline-mediated inhibition of glucose-induced insulin release were similar. Perinatal protein restriction inhibited the activity of the vagus nerve, thus reducing the insulinotrophic effect of parasympathetic pathways on pancreatic ß-cells, which inhibit insulin secretion.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Desnutrição Proteico-Calórica/fisiopatologia , Nervo Vago/fisiologia , Medula Suprarrenal/metabolismo , Animais , Animais Recém-Nascidos , Catecolaminas/metabolismo , Dieta com Restrição de Proteínas , Feminino , Glucose/farmacologia , Teste de Tolerância a Glucose , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Lactação/fisiologia , Masculino , Ratos
3.
J Endocrinol ; 201(3): 351-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19297408

RESUMO

Swimming exercises by weaning pups inhibited hypothalamic obesity onset and recovered sympathoadrenal axis activity, but this was not observed when exercise training was applied to young adult mice. However, the mechanisms producing this improved metabolism are still not fully understood. Low-intensity swimming training started at an early age and was undertaken to observe glycemic control in hypothalamic-obese mice produced by neonatal treatment with monosodium l-glutamate (MSG). Whereas MSG and control mice swam for 15 min/day, 3 days a week, from the weaning stage up to 90 days old, sedentary MSG and normal mice did not exercise at all. After 14 h of fasting, animals were killed at 90 days of age. Perigonadal fat accumulation was measured to estimate obesity. Fasting blood glucose and insulin concentrations were also measured. Fresh isolated pancreatic islets were used to test glucose-induced insulin release and total catecholamine from the adrenal glands was measured. Mice were also submitted to intraperitoneal glucose tolerance test. MSG-obese mice showed fasting hyperglycemia, hyperinsulinemia, and glucose intolerance. Severe reduction of adrenal catecholamines content has also been reported. Besides, the inhibition of fat tissue accretion, exercise caused normalization of insulin blood levels and glycemic control. The pancreatic islets of obese mice, with impaired glucose-induced insulin secretion, were recovered after swimming exercises. Adrenal catecholamine content was increased by swimming. Results show that attenuation of MSG-hypothalamic obesity onset is caused, at least in part, by modulation of sympathoadrenal axis activity imposed by early exercise, which may be associated with subsequent glucose metabolism improvement.


Assuntos
Glicemia/metabolismo , Obesidade/induzido quimicamente , Obesidade/prevenção & controle , Glutamato de Sódio , Natação/fisiologia , Animais , Animais Lactentes , Feminino , Teste de Tolerância a Glucose , Masculino , Camundongos , Obesidade/sangue , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Desmame
4.
Transplant Proc ; 39(1): 193-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17275504

RESUMO

Pancreatic islets isolated from adult obese rats, obtained by neonatal treatment with monosodium L-glutamate (MSG), oversecrete insulin stimulated by glucose concentration. Whereas adult MSG obese rats are hyperinsulinemic, their pancreatic islets still secrete insulin after high glucose demand. This is crucial so that the animals do not become hyperglycemic. Islets from MSG obese rats were implanted in diabetic donor rats so that the capacity of islets in regulating blood glucose concentration could be evaluated. Hyperglycemic (glucose 22 to 34 mmol/L) rats obtained with streptozotocin (STZ) treatment were used as recipients. Islet donors consisted of control adult and MSG obese rats. Only 600 islets were transplanted via the portal vein to diabetic rats. During 4 days after the transplant, fed blood glucose was monitored. After 12 hours of fasting the rats were killed; their blood samples were used to measure glucose and insulin concentration; retroperitoneal fat pads were isolated and weighed to estimate body fat. Transplanted islets from MSG obese rats decreased of fed glucose levels by 34% in diabetic rats (P < .05); however, glucose levels still remained twofold higher than those of intact controls (P < .05). Similar to MSG islets, islets grafts from control rats provoked the same effects in diabetic rats. High fasting blood glucose and low insulin levels of diabetic rats were corrected by islet grafts. Transplantations were able to recover 40% of fat in diabetic rats. The results demonstrated that islets from MSG obese rats may regulate blood glucose concentrations in diabetic rats, and suggesting that their function was not permanently altered by the onset of obesity.


Assuntos
Diabetes Mellitus Experimental/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Hipotálamo , Ilhotas Pancreáticas/citologia , Masculino , Obesidade , Ratos , Ratos Wistar , Coleta de Tecidos e Órgãos/métodos
5.
Life Sci ; 79(22): 2151-6, 2006 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-16934841

RESUMO

Exercise has been recommended as a remedy against a worldwide obesity epidemic; however, the onset of excessive weight gain is not fully understood, nor are the effects of exercise on body weight control. Activity deficits of the sympathetic nervous system, including the sympathoadrenal axis, have been suggested to contribute to high fat accumulation in obesity. In the present work, swim training was used to observe fat accumulation and adrenal catecholamine stocks in hypothalamic-obese mice produced by neonatal treatment with monosodium L-glutamate (MSG). MSG-treated and normal mice swam for 15 min/day, 3 days a week, from weaning up to 90 days old (EXE 21-90); from weaning up to 50 days old (EXE 21-50) and from 60 up to 90 days old (EXE 60-90). Sedentary MSG and normal mice (SED groups) did not exercise at all. Animals were sacrificed at 90 days of age. MSG treatment induced obesity, demonstrated by a 43.08% increase in epididymal fat pad weight; these adult obese mice presented 27.7% less catecholamine stocks in their adrenal glands than untreated mice (p<0.001). Exercise reduced fat accumulation and increased adrenal catecholamine content in EXE 21-90 groups. These effects were more pronounced in MSG-mice than in normal ones. Halting the exercise (EXE 21-50 groups) still changed fat accretion and catecholamine stocks; however, no effects were recorded in the EXE 60-90 groups. We conclude that metabolic changes imposed by early exercise, leading to an attenuation of MSG-hypothalamic obesity onset, are at least in part due to sympathoadrenal activity modulation.


Assuntos
Medula Suprarrenal/fisiologia , Catecolaminas/metabolismo , Obesidade/prevenção & controle , Condicionamento Físico Animal , Glutamato de Sódio/efeitos adversos , Natação , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Obesidade/induzido quimicamente , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...