Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 62(1-2): 67-77, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11693368

RESUMO

The southern part of Tierra del Fuego, in the southernmost tip of South America, is covered by dense Nothofagus spp. forests and Sphagnum-dominated peat bogs, which are subjected to the influence of ozone depletion and to increased levels of solar ultraviolet-B radiation (UV-B). Over the last 5 years we have studied some of the biological impacts of solar UV-B on natural ecosystems of this region. We have addressed two general problems: (i) do the fluctuations in UV-B levels under the influence of the Antarctic ozone 'hole' have any measurable biological impact, and (ii) what are the long-term effects of solar (ambient) UV-B on the Tierra del Fuego ecosystems? In this paper, we provide an overview of the progress made during the first 4 years of the project. We highlight and discuss the following results: (1) ambient UV-B has subtle but significant inhibitory effects on the growth of herbaceous and graminoid species of this region (growth reduction < or = 12%), whereas no consistent inhibitory effects could be detected in woody perennials; (2) in the species investigated in greatest detail, Gunnera magellanica, the inhibitory effect of solar UV-B is accompanied by increased levels of DNA damage in leaf tissue, and the DNA damage density in the early spring is clearly correlated with the dose of weighted UV-B measured at ground level; (3) the herbaceous species investigated thus far show little or no acclimation responses to ambient UV-B such as increased sunscreen levels and DNA repair capacity; and (4) ambient UV-B has significant effects on heterotrophic organisms, included marked inhibitory effects on insect herbivory. The results from the experiments summarized in this review clearly indicate that UV-B influences several potentially important processes and ecological interactions in the terrestrial ecosystems of Tierra del Fuego.


Assuntos
Ecossistema , Luz Solar , Raios Ultravioleta , Animais , Argentina , Clorofila/efeitos da radiação , Plantas/efeitos da radiação
2.
Plant Physiol ; 122(1): 117-26, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10631255

RESUMO

Colorless phenylpropanoid derivatives are known to protect plants from ultraviolet (UV) radiation, but their photoregulation and physiological roles under field conditions have not been investigated in detail. Here we describe a fast method to estimate the degree of UV penetration into photosynthetic tissue, which is based on chlorophyll fluorescence imaging. In Arabidopsis this technique clearly separated the UV-hypersensitive transparent testa (tt) tt5 and tt6 mutants from the wild type (WT) and tt3, tt4, and tt7 mutants. In field-grown soybean (Glycine max), we found significant differences in UV penetration among cultivars with different levels of leaf phenolics, and between plants grown under contrasting levels of solar UV-B. The reduction in UV penetration induced by ambient UV-B had direct implications for DNA integrity in the underlying leaf tissue; thus, the number of cyclobutane pyrimidine dimers caused by a short exposure to solar UV-B was much larger in leaves with high UV transmittance than in leaves pretreated with solar UV-B to increase the content phenylpropanoids. Most of the phenylpropanoid response to solar UV in field-grown soybeans was induced by the UV-B component (lambda

Assuntos
Clorofila/fisiologia , Glycine max/metabolismo , Fenóis/metabolismo , Raios Ultravioleta , Clorofila/metabolismo , Fluorescência , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Dímeros de Pirimidina/metabolismo , Glycine max/efeitos da radiação , Luz Solar
3.
Proc Natl Acad Sci U S A ; 96(26): 15310-5, 1999 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-10611381

RESUMO

The primary motivation behind the considerable effort in studying stratospheric ozone depletion is the potential for biological consequences of increased solar UVB (280-315 nm) radiation. Yet, direct links between ozone depletion and biological impacts have been established only for organisms of Antarctic waters under the influence of the ozone "hole;" no direct evidence exists that ozone-related variations in UVB affect ecosystems of temperate latitudes. Indeed, calculations based on laboratory studies with plants suggest that the biological impact of ozone depletion (measured by the formation of cyclobutane pyrimidine dimers in DNA) is likely to be less marked than previously thought, because UVA quanta (315-400 nm) may also cause significant damage, and UVA is unaffected by ozone depletion. Herein, we show that the temperate ecosystems of southern South America have been subjected to increasingly high levels of ozone depletion during the last decade. We found that in the spring of 1997, despite frequent cloud cover, the passages of the ozone hole over Tierra del Fuego (55 degrees S) caused concomitant increases in solar UV and that the enhanced ground-level UV led to significant increases in DNA damage in the native plant Gunnera magellanica. The fluctuations in solar UV explained a large proportion of the variation in DNA damage (up to 68%), particularly when the solar UV was weighted for biological effectiveness according to action spectra that assume a sharp decline in quantum efficiency with increasing wavelength from the UVB into the UVA regions of the spectrum.


Assuntos
Atmosfera/química , Dano ao DNA , DNA de Plantas/efeitos da radiação , Magnoliopsida/efeitos da radiação , Ozônio , Raios Ultravioleta/efeitos adversos , Relação Dose-Resposta à Radiação , Sistema Solar , América do Sul
4.
Proc Natl Acad Sci U S A ; 96(3): 980-5, 1999 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-9927679

RESUMO

Most of our present knowledge about the impacts of solar UVB radiation on terrestrial ecosystems comes from studies with plants. Recently, the effects of UVB on the growth and survival of consumer species have begun to receive attention, but very little is known about UVB impacts on animal behavior. Here we report that manipulations of the flux of solar UVB received by field-grown soybean crops had large and consistent effects on the density of the thrips (Caliothrips phaseoli, Thysanoptera: Thripidae) populations that invaded the canopies, as well as on the amount of leaf damage caused by the insects. Solar UVB strongly reduced thrips herbivory. Thrips not only preferred leaves from plants that were not exposed to solar UVB over leaves from UVB-exposed plants in laboratory and field choice experiments, but they also appeared to directly sense and avoid exposure to solar UVB. Additional choice experiments showed that soybean leaf consumption by the late-season soybean worm Anticarsia gemmatalis (Lepidoptera: Noctuidae) was much less intense in leaves with even slight symptoms of an early thrips attack than in undamaged leaves. These experiments suggest that phytophagous insects can present direct and indirect behavioral responses to solar UVB. The indirect responses are mediated by changes in the plant host that are induced by UVB and, possibly, by other insects whose behavior is affected by UVB.


Assuntos
Ecossistema , Insetos/fisiologia , Luz Solar , Raios Ultravioleta , Animais , Dieta , Insetos/efeitos da radiação , Lepidópteros/fisiologia , Percepção , Plantas
5.
Plant Physiol ; 112(1): 161-170, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12226382

RESUMO

To study functional relationships between the effects of solar ultraviolet-B radiation (UV-B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores.

6.
Proc Natl Acad Sci U S A ; 91(21): 10094-8, 1994 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-7937843

RESUMO

Transgenic tobacco plants that express an oat phytochrome gene (phyA) under control of the cauliflower mosaic virus (CaMV) 35S promoter and display altered photophysiology were used to test the role of light as a vehicle of information in dominance relationships between neighboring plants. Compared with the isogenic wild type, phyA-overexpressing plants showed dramatically reduced morphological responsivity to changes in the red/far red ratio of the incident light and to the proximity of neighboring plants in spacing experiments. In transgenic canopies an increase in stand density caused the small plants of the population to be rapidly suppressed by their neighbors. In wild-type canopies, plants responded to increased density with large morphological changes, and there appeared to be an inverse relationship between the magnitude of this morphological response and the ranking of the individual plant in the population size hierarchy. In these wild-type populations, size inequality increased only moderately with density within the time frame of the experiments. Our results suggest that, in crowded stands, the ability of individual plants to acquire information about their light environment via phytochrome plays a central role in driving architectural changes that, at the population level, delay the development of size differences between neighbors.


Assuntos
Nicotiana/fisiologia , Plantas Tóxicas , Avena/genética , Avena/metabolismo , Caulimovirus/genética , Ecologia , Genes de Plantas , Luz , Fitocromo/biossíntese , Fitocromo/genética , Plantas Geneticamente Modificadas/fisiologia , Regiões Promotoras Genéticas , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo
7.
Plant Physiol ; 100(1): 170-7, 1992 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16652942

RESUMO

Phototropic responses to broadband far red (FR) radiation were investigated in fully de-etiolated seedlings of a long-hypocotyl mutant (lh) of cucumber (Cucumis sativus L.), which is deficient in phytochrome-B, and its near isogenic wild type (WT). Continuous unilateral FR light provided against a background of white light induced negative curvatures (i.e. bending away from the FR light source) in hypocotyls of WT seedlings. This response was fluence-rate dependent and was absent in the lh mutant, even at very high fluence rates of FR. The phototropic effect of FR light on WT seedlings was triggered in the hypocotyls and occurred over a range of fluence rates in which FR was very effective in promoting hypocotyl elongation. FR light had no effect on elongation of lh-mutant hypocotyls. Seedlings grown in the field showed negative phototropic responses to the proximity of neighboring plants that absorbed blue (B) and red light and back-reflected FR radiation. The bending response was significantly larger in WT than in lh seedlings. Responses of WT and lh seedlings to lateral B light were very similar; however, elimination of the lateral B light gradients created by the proximity of plant neighbors abolished the negative curvature only in the case of lh seedlings. More than 40% of the total hypocotyl curvature induced in WT seedlings by the presence of neighboring plants was present after equilibrating the fluence rates of B light received by opposite sides of the hypocotyl. These results suggest that: (a) phytochrome functions as a phototropic sensor in de-etiolated plants, and (b) in patchy canopy environments, young seedlings actively project new leaves into light gaps via stem bending responses elicited by the B-absorbing photoreceptor(s) and phytochrome.

8.
Oecologia ; 86(4): 561-567, 1991 May.
Artigo em Inglês | MEDLINE | ID: mdl-28313338

RESUMO

Seedlings of shade-intolerant species react to alterations of the light climate caused by their neighbors with morphological changes that may influence the pattern of resource acquisition and utilization at the whole-canopy level. One such change, the increased stem elongation rate that is triggered by low red (R, 660 nm) to far-red (FR, 730 nm) ratios (R:FR) in dense canopies, might reduce the amount of assimilates available for leaf area expansion or root growth, and in that way affect resource capture by the canopy. We have tested this hypothesis by comparing the growth of both isolated individuals and canopies of the weed Amaranthus quitensis under conditions differing only in the spectral distribution of the incident light. When canopies received the full spectrum of sunlight, the stems were a large proportion (40-57%) of total biomass. Filtering the FR waveband (and hence raising the R:FR ratio to eliminate the neighbors' proximity-signal) resulted in shorter canopies with lighter stems. However, the growth of leaves and roots was not promoted by this treatment, indicating that the opportunity cost of the assimilates invested in the stems was nil or very small. Filtering the FR had no effect on biomass accumulation when plants were grown as isolated individuals. The higher growth of the canopics under full spectrum could be due to a higher light interception or to a higher efficiency of light conversion into biomass. The first possibility is weakened by the observation that filtering the FR had no effect on the dynamics of soil covering by the crops. The second is indirectly strengthened by results of an experiment with isolated plants showing that stem elongation, stem growth, and total plant biomass can be increased by reducing the flux of R light received by the stems without affecting the light climate of the leaves. Further work is needed to distinguish between these two possibilities; whatever the cause, our results show that the elongation responses to decreased R:FR may lead to a net increase in canopy productivity, and do not necessarily have a negative impact on the growth of resource-harvesting organs.

9.
Science ; 247(4940): 329-32, 1990 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17735851

RESUMO

When individual seedlings of Datura ferox and Sinapis alba were transferred to populations formed by plants of similar stature, they responded with an increase in the rate of stem elongation. The reaction was detected within 3 days after transplanting and occurred well before shading among neighbors became important. This rapid response, which may be crucial for success in the competition for light, was reduced or abolished when individual internodes were "blinded" to the far-red radiation scattered by the surrounding seedlings. These results show the operation of a localized, photomorphogenetic control of stem elongation that may play a central role in the plastic adjustment of plants during the early stages of canopy development.

10.
Plant Physiol ; 89(4): 1324-30, 1989 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16666704

RESUMO

A fiber optic probe inserted into plant tissues was used to investigate the effects of canopy density on the light environment in different organs. The red:far-red ratio inside the stem of Datura ferox L. seedlings and the estimated phytochrome photoequilibrium were strongly reduced by the presence of neighbors forming canopies too sparse to cause any mutual shading at the level of the leaves. In such canopies, changes in plant density had little effects on the light regime inside the leaves of the succulent Aeonium haworthii (S.D.) Webb et Berth., particularly when the lamina was kept nearly normal to the direct rays of the sun. In field experiments using D. ferox and Sinapis alba L. seedlings, the elongation of the internodes responded to various types of localized light-quality treatments that simulated different plant densities in sparse canopies. The responses were quantitatively similar to those elicited by changes in plant density. The evidence supports the hypothesis that, in stands formed by plants of similar size, the red:far-red ratio of the light that impinges laterally on the stems is among the earliest environmental cues that allow plants to detect local canopy density and adjust axis extension accordingly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...