Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892101

RESUMO

The central dogma treats the ribosome as a molecular machine that reads one mRNA codon at a time as it adds each amino acid to its growing peptide chain. However, this and previous studies suggest that ribosomes actually perceive pairs of adjacent codons as they take three-nucleotide steps along the mRNA. We examined GNN codons, which we find are surprisingly overrepresented in eukaryote protein-coding open reading frames (ORFs), especially immediately after NNU codons. Ribosome profiling experiments in yeast revealed that ribosomes with NNU at their aminoacyl (A) site have particularly elevated densities when NNU is immediately followed (3') by a GNN codon, indicating slower mRNA threading of the NNU codon from the ribosome's A to peptidyl (P) sites. Moreover, if the assessment was limited to ribosomes that have only recently arrived at the next codon, by examining 21-nucleotide ribosome footprints (21-nt RFPs), elevated densities were observed for multiple codon classes when followed by GNN. This striking translation slowdown at adjacent 5'-NNN GNN codon pairs is likely mediated, in part, by the ribosome's CAR surface, which acts as an extension of the A-site tRNA anticodon during ribosome translocation and interacts through hydrogen bonding and pi stacking with the GNN codon. The functional consequences of 5'-NNN GNN codon adjacency are expected to influence the evolution of protein coding sequences.


Assuntos
Códon , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Códon/genética , Ribossomos/metabolismo , Ribossomos/genética , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticódon/genética
2.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163343

RESUMO

The ribosome CAR interaction surface behaves as an extension of the decoding center A site and has H-bond interactions with the +1 codon, which is next in line to enter the A site. Through molecular dynamic simulations, we investigated the codon sequence specificity of this CAR-mRNA interaction and discovered a strong preference for GCN codons, suggesting that there may be a sequence-dependent layer of translational regulation dependent on the CAR interaction surface. Dissection of the CAR-mRNA interaction through nucleotide substitution experiments showed that the first nucleotide of the +1 codon dominates over the second nucleotide position, consistent with an energetically favorable zipper-like activity that emanates from the A site through the CAR-mRNA interface. Moreover, the CAR/+1 codon interaction is affected by the identity of nucleotide 3 of +1 GCN codons, which influences the stacking of G and C. Clustering analysis suggests that the A-site decoding center adopts different neighborhood substates that depend on the identity of the +1 codon.


Assuntos
Simulação de Dinâmica Molecular , Ribossomos , Códon/genética , Nucleotídeos/análise , RNA Mensageiro/química , Ribossomos/química , Ribossomos/genética
3.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572867

RESUMO

The ribosome CAR interaction surface is hypothesized to provide a layer of translation regulation through hydrogen-bonding to the +1 mRNA codon that is next to enter the ribosome A site during translocation. The CAR surface consists of three residues, 16S/18S rRNA C1054, A1196 (E. coli 16S numbering), and R146 of yeast ribosomal protein Rps3. R146 can be methylated by the Sfm1 methyltransferase which is downregulated in stressed cells. Through molecular dynamics analysis, we show here that methylation of R146 compromises the integrity of CAR by reducing the cation-pi stacking of the R146 guanidinium group with A1196, leading to reduced CAR hydrogen-bonding with the +1 codon. We propose that ribosomes assembled under stressed conditions have unmethylated R146, resulting in elevated CAR/+1 codon interactions, which tunes translation levels in response to the altered cellular context.


Assuntos
Arginina/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Ligação de Hidrogênio , Metilação , Modelos Moleculares , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
PLoS One ; 15(9): e0233197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32946445

RESUMO

Levels of protein translation by ribosomes are governed both by features of the translation machinery as well as sequence properties of the mRNAs themselves. We focus here on a striking three-nucleotide periodicity, characterized by overrepresentation of GCN codons and underrepresentation of G at the second position of codons, that is observed in Open Reading Frames (ORFs) of mRNAs. Our examination of mRNA sequences in Saccharomyces cerevisiae revealed that this periodicity is particularly pronounced in the initial codons-the ramp region-of ORFs of genes with high protein expression. It is also found in mRNA sequences immediately following non-standard AUG start sites, located upstream or downstream of the standard annotated start sites of genes. To explore the possible influences of the ramp GCN periodicity on translation efficiency, we tested edited ramps with accentuated or depressed periodicity in two test genes, SKN7 and HMT1. Greater conformance to (GCN)n was found to significantly depress translation, whereas disrupting conformance had neutral or positive effects on translation. Our recent Molecular Dynamics analysis of a subsystem of translocating ribosomes in yeast revealed an interaction surface that H-bonds to the +1 codon that is about to enter the ribosome decoding center A site. The surface, comprised of 16S/18S rRNA C1054 and A1196 (E. coli numbering) and R146 of ribosomal protein Rps3, preferentially interacts with GCN codons, and we hypothesize that modulation of this mRNA-ribosome interaction may underlie GCN-mediated regulation of protein translation. Integration of our expression studies with large-scale reporter studies of ramp sequence variants suggests a model in which the C1054-A1196-R146 (CAR) interaction surface can act as both an accelerator and braking system for ribosome translation.


Assuntos
Códon de Iniciação/genética , Biossíntese de Proteínas/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Composição de Bases/genética , Códon de Iniciação/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Simulação de Dinâmica Molecular , Fases de Leitura Aberta/genética , Proteína-Arginina N-Metiltransferases/biossíntese , Proteína-Arginina N-Metiltransferases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
5.
Biomolecules ; 10(6)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503152

RESUMO

A longstanding challenge is to understand how ribosomes parse mRNA open reading frames (ORFs). Significantly, GCN codons are over-represented in the initial codons of ORFs of prokaryote and eukaryote mRNAs. We describe a ribosome rRNA-protein surface that interacts with an mRNA GCN codon when next in line for the ribosome A-site. The interaction surface is comprised of the edges of two stacked rRNA bases: the Watson-Crick edge of 16S/18S rRNA C1054 and the adjacent Hoogsteen edge of A1196 (Escherichia coli 16S rRNA numbering). Also part of the interaction surface, the planar guanidinium group of a conserved Arginine (R146 of yeast ribosomal protein Rps3) is stacked adjacent to A1196. On its other side, the interaction surface is anchored to the ribosome A-site through base stacking of C1054 with the wobble anticodon base of the A-site tRNA. Using molecular dynamics simulations of a 495-residue subsystem of translocating ribosomes, we observed base pairing of C1054 to nucleotide G at position 1 of the next-in-line codon, consistent with previous cryo-EM observations, and hydrogen bonding of A1196 and R146 to C at position 2. Hydrogen bonding to both of these codon positions is significantly weakened when C at position 2 is changed to G, A or U. These sequence-sensitive mRNA-ribosome interactions at the C1054-A1196-R146 (CAR) surface potentially contribute to the GCN-mediated regulation of protein translation.


Assuntos
RNA Mensageiro/química , Ribossomos/química , Simulação de Dinâmica Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...