Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352391

RESUMO

We report a functional pipeline for facile conversion of variable Fv domains, typically discovered in antibody discovery programs, into chimeric monoclonal antibodies (mAbs). Often, in initial screenings, a set of candidate mAbs is produced in small volumes and purified from supernatant for testing. Our pipeline also simplifies purification of mAbs by using an extended histidine tag (His-10) fused to the C-terminus of the light chain. Both the length of the His-10 and its location have been shown to affect the efficacy of mAb purification using an inexpensive nickel-based resin at neutral pH. Our antibody cloning and purification pipeline, when followed together with detection and affinity measurements, can be smoothly incorporated into an antibody discovery workflow.

2.
Curr Opin Syst Biol ; 24: 71-77, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33073065

RESUMO

Systems biology involves network-oriented, computational approaches to modeling biological systems through analysis of big biological data. To contribute maximally to scientific progress, big biological data should be FAIR: findable, accessible, interoperable, and reusable. Here, we describe high-throughput sequencing data that characterize the vast diversity of B- and T-cell clones comprising the adaptive immune receptor repertoire (AIRR-seq data) and its contribution to our understanding of COVID-19 (coronavirus disease 19). We describe the accomplishments of the AIRR community, a grass-roots network of interdisciplinary laboratory scientists, bioinformaticians, and policy wonks, in creating and publishing standards, software and repositories for AIRR-seq data based on the FAIR principles.

3.
Immunol Rev ; 284(1): 24-41, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29944754

RESUMO

Next-generation sequencing allows the characterization of the adaptive immune receptor repertoire (AIRR) in exquisite detail. These large-scale AIRR-seq data sets have rapidly become critical to vaccine development, understanding the immune response in autoimmune and infectious disease, and monitoring novel therapeutics against cancer. However, at present there is no easy way to compare these AIRR-seq data sets across studies and institutions. The ability to combine and compare information for different disease conditions will greatly enhance the value of AIRR-seq data for improving biomedical research and patient care. The iReceptor Data Integration Platform (gateway.ireceptor.org) provides one implementation of the AIRR Data Commons envisioned by the AIRR Community (airr-community.org), an initiative that is developing protocols to facilitate sharing and comparing AIRR-seq data. The iReceptor Scientific Gateway links distributed (federated) AIRR-seq repositories, allowing sequence searches or metadata queries across multiple studies at multiple institutions, returning sets of sequences fulfilling specific criteria. We present a review of the development of iReceptor, and how it fits in with the general trend toward sharing genomic and health data, and the development of standards for describing and reporting AIRR-seq data. Researchers interested in integrating their repositories of AIRR-seq data into the iReceptor Platform are invited to contact support@ireceptor.org.


Assuntos
Anticorpos/genética , Bases de Dados Genéticas , Disseminação de Informação/métodos , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Anticorpos/imunologia , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet
4.
Front Immunol ; 8: 1418, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163494

RESUMO

High-throughput sequencing (HTS) of immunoglobulin (B-cell receptor, antibody) and T-cell receptor repertoires has increased dramatically since the technique was introduced in 2009 (1-3). This experimental approach explores the maturation of the adaptive immune system and its response to antigens, pathogens, and disease conditions in exquisite detail. It holds significant promise for diagnostic and therapy-guiding applications. New technology often spreads rapidly, sometimes more rapidly than the understanding of how to make the products of that technology reliable, reproducible, or usable by others. As complex technologies have developed, scientific communities have come together to adopt common standards, protocols, and policies for generating and sharing data sets, such as the MIAME protocols developed for microarray experiments. The Adaptive Immune Receptor Repertoire (AIRR) Community formed in 2015 to address similar issues for HTS data of immune repertoires. The purpose of this perspective is to provide an overview of the AIRR Community's founding principles and present the progress that the AIRR Community has made in developing standards of practice and data sharing protocols. Finally, and most important, we invite all interested parties to join this effort to facilitate sharing and use of these powerful data sets (join@airr-community.org).

6.
Sci Rep ; 6: 38177, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905530

RESUMO

The mechanism by which the HIV-1 MPER epitope is recognized by the potent neutralizing antibody 10E8 at membrane interfaces remains poorly understood. To solve this problem, we have optimized a 10E8 peptide epitope and analyzed the structure and binding activities of the antibody in membrane and membrane-like environments. The X-ray crystal structure of the Fab-peptide complex in detergents revealed for the first time that the epitope of 10E8 comprises a continuous helix spanning the gp41 MPER/transmembrane domain junction (MPER-N-TMD; Env residues 671-687). The MPER-N-TMD helix projects beyond the tip of the heavy-chain complementarity determining region 3 loop, indicating that the antibody sits parallel to the plane of the membrane in binding the native epitope. Biophysical, biochemical and mutational analyses demonstrated that strengthening the affinity of 10E8 for the TMD helix in a membrane environment, correlated with its neutralizing potency. Our research clarifies the molecular mechanisms underlying broad neutralization of HIV-1 by 10E8, and the structure of its natural epitope. The conclusions of our research will guide future vaccine-design strategies targeting MPER.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Anti-HIV/química , Proteína gp41 do Envelope de HIV/química , HIV-1/química , Fragmentos Fab das Imunoglobulinas/química , Peptídeos/química , Anticorpos Neutralizantes/imunologia , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Peptídeos/imunologia , Estrutura Secundária de Proteína
7.
BMC Bioinformatics ; 17(Suppl 13): 333, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27766961

RESUMO

BACKGROUND: The genes that produce antibodies and the immune receptors expressed on lymphocytes are not germline encoded; rather, they are somatically generated in each developing lymphocyte by a process called V(D)J recombination, which assembles specific, independent gene segments into mature composite genes. The full set of composite genes in an individual at a single point in time is referred to as the immune repertoire. V(D)J recombination is the distinguishing feature of adaptive immunity and enables effective immune responses against an essentially infinite array of antigens. Characterization of immune repertoires is critical in both basic research and clinical contexts. Recent technological advances in repertoire profiling via high-throughput sequencing have resulted in an explosion of research activity in the field. This has been accompanied by a proliferation of software tools for analysis of repertoire sequencing data. Despite the widespread use of immune repertoire profiling and analysis software, there is currently no standardized format for output files from V(D)J analysis. Researchers utilize software such as IgBLAST and IMGT/High V-QUEST to perform V(D)J analysis and infer the structure of germline rearrangements. However, each of these software tools produces results in a different file format, and can annotate the same result using different labels. These differences make it challenging for users to perform additional downstream analyses. RESULTS: To help address this problem, we propose a standardized file format for representing V(D)J analysis results. The proposed format, VDJML, provides a common standardized format for different V(D)J analysis applications to facilitate downstream processing of the results in an application-agnostic manner. The VDJML file format specification is accompanied by a support library, written in C++ and Python, for reading and writing the VDJML file format. CONCLUSIONS: The VDJML suite will allow users to streamline their V(D)J analysis and facilitate the sharing of scientific knowledge within the community. The VDJML suite and documentation are available from https://vdjserver.org/vdjml/ . We welcome participation from the community in developing the file format standard, as well as code contributions.


Assuntos
Genômica/métodos , Receptores Imunológicos/genética , Software , Recombinação V(D)J , Humanos , Disseminação de Informação
8.
MAbs ; 8(8): 1425-1434, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557809

RESUMO

Antibody Engineering & Therapeutics, the largest meeting devoted to antibody science and technology and the annual meeting of The Antibody Society, will be held in San Diego, CA on December 11-15, 2016. Each of 14 sessions will include six presentations by leading industry and academic experts. In this meeting preview, the session chairs discuss the relevance of their topics to current and future antibody therapeutics development. Session topics include bispecifics and designer polyclonal antibodies; antibodies for neurodegenerative diseases; the interface between passive and active immunotherapy; antibodies for non-cancer indications; novel antibody display, selection and screening technologies; novel checkpoint modulators / immuno-oncology; engineering antibodies for T-cell therapy; novel engineering strategies to enhance antibody functions; and the biological Impact of Fc receptor engagement. The meeting will open with keynote speakers Dennis R. Burton (The Scripps Research Institute), who will review progress toward a neutralizing antibody-based HIV vaccine; Olivera J. Finn, (University of Pittsburgh School of Medicine), who will discuss prophylactic cancer vaccines as a source of therapeutic antibodies; and Paul Richardson (Dana-Farber Cancer Institute), who will provide a clinical update on daratumumab for multiple myeloma. In a featured presentation, a representative of the World Health Organization's INN expert group will provide a perspective on antibody naming. "Antibodies to watch in 2017" and progress on The Antibody Society's 2016 initiatives will be presented during the Society's special session. In addition, two pre-conference workshops covering ways to accelerate antibody drugs to the clinic and the applications of next-generation sequencing in antibody discovery and engineering will be held on Sunday December 11, 2016.


Assuntos
Anticorpos , Engenharia de Proteínas/métodos , Animais , Anticorpos/uso terapêutico , Humanos
10.
MAbs ; 7(6): 981-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26421752

RESUMO

Antibody Engineering & Therapeutics, the annual meeting of The Antibody Society, will be held in San Diego, CA in early December 2015. In this meeting preview, the chairs provide their thoughts on the importance of their session topics, which include antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, overcoming resistance to clinical immunotherapy, and building comprehensive IGVH-gene repertoires through discovering, confirming and cataloging new germline IGVH genes. The Antibody Society's special session will focus on "Antibodies to watch" in 2016, which are a subset of the nearly 50 antibodies currently in Phase 3 clinical studies. Featuring over 100 speakers in total, the meeting will commence with keynote presentations by Erica Ollmann Saphire (The Scripps Research Institute), Wayne A. Marasco (Dana-Farber Cancer Institute/Harvard Medical School), Joe W. Gray (Oregon Health & Science University), and Anna M. Wu (University of California Los Angeles), and it will conclude with workshops on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries and on computational antibody design.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Imunoconjugados/imunologia , Engenharia de Proteínas/métodos , Anticorpos Monoclonais/uso terapêutico , Descoberta de Drogas/métodos , Humanos , Imunoconjugados/uso terapêutico , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Imunoterapia/métodos , Pesquisa Translacional Biomédica/métodos
11.
J Virol ; 89(23): 11975-89, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378169

RESUMO

UNLABELLED: The 4E10 antibody recognizes the membrane-proximal external region (MPER) of the HIV-1 Env glycoprotein gp41 transmembrane subunit, exhibiting one of the broadest neutralizing activities known to date. The neutralizing activity of 4E10 requires solvent-exposed hydrophobic residues at the apex of the complementarity-determining region (CDR) H3 loop, but the molecular basis for this requirement has not been clarified. Here, we report the cocrystal structures and the energetic parameters of binding of a peptide bearing the 4E10-epitope sequence (4E10ep) to nonneutralizing versions of the 4E10 Fab. Nonneutralizing Fabs were obtained by shortening and decreasing the hydrophobicity of the CDR-H3 loop (termed ΔLoop) or by substituting the two tryptophan residues of the CDR-H3 apex with Asp residues (termed WDWD), which also decreases hydrophobicity but preserves the length of the loop. The analysis was complemented by the first crystal structure of the 4E10 Fab in its ligand-free state. Collectively, the data ruled out major conformational changes of CDR-H3 at any stage during the binding process (equilibrium or transition state). Although these mutations did not impact the affinity of wild-type Fab for the 4E10ep in solution, the two nonneutralizing versions of 4E10 were deficient in binding to MPER inserted in the plasma membrane (mimicking the environment faced by the antibody in vivo). The conclusions of our structure-function analysis strengthen the idea that to exert effective neutralization, the hydrophobic apex of the solvent-exposed CDR-H3 loop must recognize an antigenic structure more complex than just the linear α-helical epitope and likely constrained by the viral membrane lipids. IMPORTANCE: The broadly neutralizing anti-HIV-1 4E10 antibody blocks infection caused by nearly all viral strains and isolates examined thus far. However, 4E10 (or 4E10-like) antibodies are rarely found in HIV-1-infected individuals or elicited through vaccination. Impediments to the design of successful 4E10 immunogens are partly attributed to an incomplete understanding of the structural and binding characteristics of this class of antibodies. Since the broadly neutralizing activity of 4E10 is abrogated by mutations of the tip of the CDR-H3, we investigated their impact on binding of the MPER-epitope at the atomic and energetic levels. We conclude that the difference between neutralizing and nonneutralizing antibodies of 4E10 is neither structural nor energetic but is related to the capacity to recognize the HIV-1 gp41 epitope inserted in biological membranes. Our findings strengthen the idea that to elicit similar neutralizing antibodies, the suitable MPER vaccine must be "delivered" in a membrane environment.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Epitopos/metabolismo , Anticorpos Anti-HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Modelos Moleculares , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Amplamente Neutralizantes , Varredura Diferencial de Calorimetria , Cristalização , Ensaio de Imunoadsorção Enzimática , Anticorpos Anti-HIV/metabolismo , Humanos , Testes de Neutralização , Ligação Proteica , Ressonância de Plasmônio de Superfície , Termodinâmica , Difração de Raios X
12.
Front Microbiol ; 6: 755, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300850

RESUMO

For the past 25 years, phage display technology has been an invaluable tool for studies of protein-protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage's potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage's large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use.

13.
MAbs ; 6(5): 1115-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517297

RESUMO

The 25th anniversary of the Antibody Engineering & Therapeutics Conference, the Annual Meeting of The Antibody Society, will be held in Huntington Beach, CA, December 7-11, 2014. Organized by IBC Life Sciences, the event will celebrate past successes, educate participants on current activities and offer a vision of future progress in the field. Keynote addresses will be given by academic and industry experts Douglas Lauffenburger (Massachusetts Institute of Technology), Ira Pastan (National Cancer Institute), James Wells (University of California, San Francisco), Ian Tomlinson (GlaxoSmithKline) and Anthony Rees (Rees Consulting AB and Emeritus Professor, University of Bath). These speakers will provide updates of their work, placed in the context of the substantial growth of the industry over the past 25 years.


Assuntos
Anticorpos/imunologia , Anticorpos/uso terapêutico , Engenharia de Proteínas/métodos , Anticorpos/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Humanos
14.
MAbs ; 6(3): 577-618, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24589717

RESUMO

The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates.


Assuntos
Anticorpos/química , Anticorpos/uso terapêutico , Animais , Anticorpos/genética , Evolução Molecular Direcionada , Desenho de Fármacos , Humanos , Imunoterapia , Neoplasias/terapia , Engenharia de Proteínas , Sociedades Científicas , Biologia de Sistemas
15.
Am J Hum Genet ; 92(4): 530-46, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23541343

RESUMO

The immunoglobulin heavy-chain locus (IGH) encodes variable (IGHV), diversity (IGHD), joining (IGHJ), and constant (IGHC) genes and is responsible for antibody heavy-chain biosynthesis, which is vital to the adaptive immune response. Programmed V-(D)-J somatic rearrangement and the complex duplicated nature of the locus have impeded attempts to reconcile its genomic organization based on traditional B-lymphocyte derived genetic material. As a result, sequence descriptions of germline variation within IGHV are lacking, haplotype inference using traditional linkage disequilibrium methods has been difficult, and the human genome reference assembly is missing several expressed IGHV genes. By using a hydatidiform mole BAC clone resource, we present the most complete haplotype of IGHV, IGHD, and IGHJ gene regions derived from a single chromosome, representing an alternate assembly of ∼1 Mbp of high-quality finished sequence. From this we add 101 kbp of previously uncharacterized sequence, including functional IGHV genes, and characterize four large germline copy-number variants (CNVs). In addition to this germline reference, we identify and characterize eight CNV-containing haplotypes from a panel of nine diploid genomes of diverse ethnic origin, discovering previously unmapped IGHV genes and an additional 121 kbp of insertion sequence. We genotype four of these CNVs by using PCR in 425 individuals from nine human populations. We find that all four are highly polymorphic and show considerable evidence of stratification (Fst = 0.3-0.5), with the greatest differences observed between African and Asian populations. These CNVs exhibit weak linkage disequilibrium with SNPs from two commercial arrays in most of the populations tested.


Assuntos
Variações do Número de Cópias de DNA/genética , Fusão Gênica/genética , Genes de Cadeia Pesada de Imunoglobulina , Haplótipos/genética , Mola Hidatiforme/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Alelos , Cromossomos Artificiais Bacterianos , Feminino , Genética Populacional , Genótipo , Humanos , Dados de Sequência Molecular , Gravidez , Análise de Sequência de DNA , Recombinação V(D)J
16.
MAbs ; 4(6): 648-52, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23007482

RESUMO

Now in its 23rd and 10th years, respectively, the Antibody Engineering and Antibody Therapeutics conferences are the Annual Meeting of The Antibody Society. The scientific program covers the full spectrum of challenges in antibody research and development from basic science through clinical development. In this preview of the conferences, the chairs provide their thoughts on sessions that will allow participants to track emerging trends in (1) the development of next-generation immunomodulatory antibodies; (2) the complexity of the environment in which antibodies must function; (3) antibody-targeted central nervous system (CNS) therapies that cross the blood brain barrier; (4) the extension of antibody half-life for improved efficacy and pharmacokinetics (PK)/pharmacodynamics (PD); and (5) the application of next generation DNA sequencing to accelerate antibody research. A pre-conference workshop on Sunday, December 2, 2012 will update participants on recent intellectual property (IP) law changes that affect antibody research, including biosimilar legislation, the America Invents Act and recent court cases. Keynote presentations will be given by Andreas Plückthun (University of Zürich), who will speak on engineering receptor ligands with powerful cellular responses; Gregory Friberg (Amgen Inc.), who will provide clinical updates of bispecific antibodies; James D. Marks (University of California, San Francisco), who will discuss a systems approach to generating tumor targeting antibodies; Dario Neri (Swiss Federal Institute of Technology Zürich), who will speak about delivering immune modulators at the sites of disease; William M. Pardridge (University of California, Los Angeles), who will discuss delivery across the blood-brain barrier; and Peter Senter (Seattle Genetics, Inc.), who will present his vision for the future of antibody-drug conjugates. For more information on these meetings or to register to attend, please visit www.IBCLifeSciences.com/AntibodyEng or call 800-390-4078. Members of The Antibody Society and mAbs journal subscribers receive a 20% discount for meeting registration. To obtain this discount, email kdostie@ibcusa.com. mAbs is the official therapeutics journal of The Antibody Society and offers a discounted subscription to Society members for $49.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Anticorpos Monoclonais/genética , Anticorpos Antineoplásicos/genética , California , Humanos , Imunoterapia/tendências , Imunotoxinas , Engenharia de Proteínas , Sociedades Científicas , Pesquisa Translacional Biomédica
17.
Eukaryot Cell ; 11(11): 1333-44, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22903978

RESUMO

Siderophores have been identified as virulence factors in the opportunistic fungal pathogen Aspergillus fumigatus. The 14-pass transmembrane protein MirB is postulated to function as a siderophore transporter, responsible for uptake of the hydroxamate siderophore N,N',N″-triacetylfusarinine C (TAFC). Our aim was to identify amino acids of A. fumigatus MirB that are crucial for uptake of TAFC. Site-directed mutagenesis was used to create MirB mutants. Expression of wild-type and mutant proteins in the Saccharomyces cerevisiae strain PHY14, which lacks endogenous siderophore transporters, was confirmed by Western blotting. TAFC transport assays using (55)Fe-labeled TAFC and growth assays with Fe-TAFC as the sole iron source identified alanine 125, tyrosine 577, loop 3, and the second half of loop 7 (Loop7Del2) as crucial for function, since their substitution or deletion abrogated uptake completely. Wild-type MirB transported ferricrocin and coprogen as well as TAFC but not ferrichrysin. MirB was localized by fluorescence microscopy using antisera raised against a MirB extracellular loop peptide. Immunofluorescence microscopy showed that in yeast, wild-type MirB had a punctate distribution under the plasma membrane, as did the A125D and Y577A strains, indicating that the defect in transport of these mutants was unlikely to be due to mislocalization or degradation. MirB immunolocalization in A. fumigatus showed that the transporter was found in vesicles which cycled between the cytoplasm and the plasma membrane and was concentrated at the hyphal tips. The location of MirB was not influenced by the presence of the siderophore TAFC but was sensitive to internal iron stores.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sideróforos/metabolismo , Aminoácidos/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Transporte Biológico , Western Blotting , Membrana Celular/genética , Membrana Celular/metabolismo , Biologia Computacional/métodos , Citoplasma/genética , Citoplasma/metabolismo , Compostos Férricos/isolamento & purificação , Compostos Férricos/metabolismo , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Proteínas Fúngicas/genética , Ácidos Hidroxâmicos/isolamento & purificação , Ácidos Hidroxâmicos/metabolismo , Hifas/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/genética , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sideróforos/genética , Sideróforos/isolamento & purificação
19.
J Virol ; 86(6): 2930-41, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22238313

RESUMO

Failure to elicit broadly neutralizing (bNt) antibodies (Abs) against the membrane-proximal external region of HIV-1 gp41 (MPER) reflects the difficulty of mimicking its neutralization-competent structure (NCS). Here, we analyzed MPER antigenicity in the context of the plasma membrane and identified a role for the gp41 transmembrane domain (TM) in exposing the epitopes of three bNt monoclonal Abs (MAbs) (2F5, 4E10, and Z13e1). We transiently expressed DNA constructs encoding gp41 ectodomain fragments fused to either the TM of the platelet-derived growth factor receptor (PDGFR) or the gp41 TM and cytoplasmic tail domain (CT). Constructs encoding the MPER tethered to the gp41 TM followed by a 27-residue CT fragment (MPER-TM1) produced optimal MAb binding. Critical binding residues for the three Nt MAbs were identified using a panel of 24 MPER-TM1 mutants bearing single amino acid substitutions in the MPER; many were previously shown to affect MAb-mediated viral neutralization. Moreover, non-Nt mutants of MAbs 2F5 and 4E10 exhibited a reduction in binding to MPER-TM1 and yet maintained binding to synthetic MPER peptides, indicating that MPER-TM1 better approximates the MPER NCS than peptides. Replacement of the gp41 TM and CT of MPER-TM1 with the PDGFR TM reduced binding by MAb 4E10, but not 2F5, indicating that the gp41 TM plays a pivotal role in orienting the 4E10 epitope, and more globally, in affecting MPER exposure.


Assuntos
Membrana Celular/virologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Membrana Celular/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Proteína gp41 do Envelope de HIV/genética , Infecções por HIV/imunologia , HIV-1/química , HIV-1/genética , Humanos , Estrutura Terciária de Proteína
20.
Bioeng Bugs ; 2(5): 275-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22008640

RESUMO

Filamentous bacteriophage are commonly used as immunogenic carriers for peptides and proteins displayed on the phage surface. Previously, we showed that immunization with phage to which peptides had been chemically conjugated can elicit a focused anti-peptide antibody response compared with traditional carrier molecules bearing the same peptide, perhaps due to the low surface complexity of the phage. The regularity of its surface also gives the phage other advantages as a carrier, including immunological simplicity and thousands of well-defined sites for chemical conjugation. More recently, we showed that focusing of antibody responses against 'target' peptides was enhanced when the phage's molecular surface was simplified by removal of immunodominant B-cell epitopes present on the minor coat protein, pIII. The pIII-truncated variant elicits an antibody response that is largely restricted to the exposed N-terminus of the major coat protein, pVIII, and to phage-associated bacterial lipopolysaccharide, and a significant fraction of this response cross-reacts with a 12-residue peptide covering the surface-exposed region of pVIII. This allows one to track antibody responses against the phage (and any associated haptens) as they develop over time, and characterize them using a combination of serological, flow cytometric, cellular and immunogenetic assays. The filamentous phage thus provides an excellent model system for studying various aspects of the antibody response, all with the goal of targeting antibody production against weakly immunogenic peptides, proteins and carbohydrates.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos/imunologia , Sistemas de Liberação de Medicamentos/métodos , Imunidade Humoral , Inovirus/imunologia , Animais , Anticorpos/imunologia , Antígenos/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Portadores de Fármacos/farmacologia , Humanos , Inovirus/genética , Camundongos , Modelos Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...