Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 7: e7444, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31435491

RESUMO

The red-eared slider turtle (Trachemys scripta elegans; RES) is often considered one of the world's most invasive species. Results from laboratory and mesocosm experiments suggest that introduced RES outcompete native turtles for key ecological resources, but such experiments can overestimate the strength of competition. We report on the first field experiment with a wild turtle community, involving introduced RES and a declining native species of conservation concern, the western pond turtle (Emys marmorata; WPT). Using a before/after experimental design, we show that after removing most of an introduced RES population, the remaining RES dramatically shifted their spatial basking distribution in a manner consistent with strong intraspecific competition. WPT also altered their spatial basking distribution after the RES removal, but in ways inconsistent with strong interspecific competition. However, we documented reduced levels of WPT basking post-removal, which may reflect a behavioral shift attributable to the lower density of the turtle community. WPT body condition also increased after we removed RES, consistent with either indirect or direct competition between WPT and RES and providing the first evidence that RES can compete with a native turtle in the wild. We conclude that the negative impacts on WPT basking by RES in natural contexts are more limited than suggested by experiments with captive turtles, although wild WPT do appear to compete for food with introduced RES. Our results highlight the importance of manipulative field experiments when studying biological invasions, and the potential value of RES removal as a management strategy for WPT.

2.
Ecology ; 97(2): 427-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27145617

RESUMO

Ecosystem engineers, organisms that modify the physical environment, are generally thought to increase diversity by facilitating species that benefit from engineered habitats. Recent theoretical work, however, suggests that ecosystem engineering could initiate cascades of trophic interactions that shape community structure in unexpected ways, potentially having negative indirect effects on abundance and diversity in components of the community that do not directly interact with the habitat modifications. We tested the indirect effects of a gall-forming wasp on arthropod communities in surrounding unmodified foliage. We experimentally removed all senesced galls from entire trees during winter and sampled the arthropod community on foliage after budburst. Gall removal resulted in 59% greater herbivore density, 26% greater herbivore richness, and 27% greater arthropod density five weeks after budburst. Gall removal also reduced the differences in community composition among trees (i.e., reduced beta diversity), even when accounting for differences in richness. The community inside galls during winter and through the growing season was dominated by jumping spiders (Salticidae; 0.87 ± 0.12 spiders per gall). We suggest that senesced galls provided habitat for spiders, which suppressed herbivorous arthropods and increased beta diversity by facilitating assembly of unusual arthropod communities. Our results demonstrate that the effects of habitat modification by ecosystem engineers can extend beyond merely providing habitat for specialists; the effects can propagate far enough to influence the structure of communities that do not directly interact with habitat modifications.


Assuntos
Biodiversidade , Cadeia Alimentar , Herbivoria , Insetos/fisiologia , Quercus , Animais , Tumores de Planta , Densidade Demográfica , Comportamento Predatório , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...