Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(22): 14907-14914, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32378876

RESUMO

The metal-clad leaky waveguide (MCLW) is an optical biosensor consisting of a metal layer and a low index waveguide layer on a glass substrate. This label-free sensor measures refractive index (RI) changes within the waveguide layer. This work shows the development and optimization of acrylate based-hydrogel as the waveguide layer formed from PEG diacrylate (PEGDA, Mn 700), PEG methyl ether acrylate (PEGMEA, Mn 480), and acrylate-PEG2000-NHS fabricated on a substrate coated with 9.5 nm of titanium. The acrylate-based hydrogel is a synthetic polymer, so properties such as optical transparency, porosity, and hydrogel functionalization by a well-controlled reactive group can be tailored for immobilization of the bioreceptor within the hydrogel matrix. The waveguide sensor demonstrated an equal response to solutions of identical RI containing small (glycerol) and large (bovine serum albumin; BSA) analyte molecules, indicating that the hydrogel waveguide film is highly porous to both sizes of molecule, thus potentially allowing penetration of a range of analytes within the porous matrix. The final optimized MCLW chip was formed from a total hydrogel concentration of 40% v/v of PEGMEA-PEGDA (Mn 700), functionalized with 2.5% v/v of acrylate-PEG2000-NHS. The sensor generated a single-moded waveguide signal with a RI sensitivity of 128.61 ± 0.15° RIU-1 and limit of detection obtained at 2.2 × 10-6 RIU with excellent signal-to-noise ratio for the glycerol detection. The sensor demonstrated RI detection by monitoring changes in the out-coupled angle resulting from successful binding of d-biotin to streptavidin immobilized on functionalized acrylate hydrogel, generating a binding signal of (12.379 ± 0.452) × 10-3°.


Assuntos
Acrilatos/química , Técnicas Biossensoriais/instrumentação , Hidrogéis/química , Hidrogéis/síntese química , Fenômenos Ópticos , Animais , Técnicas de Química Sintética , Polietilenoglicóis/química
2.
Opt Lett ; 33(7): 651-3, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18382506

RESUMO

Refractive index modification of pure poly(methyl methacrylate) (PMMA) is investigated as a function of pulse duration using femtosecond lasers at 800 and 387 nm wavelength. It is observed that at 800 nm, the refractive index is modified more efficiently as the pulse duration decreases below 100 fs, whereas at 387 nm, efficient index modification is accomplished with longer, 180 fs pulses. Results suggest that three- and two-photon absorption is responsible for modification of pure PMMA at 800 nm and 387 nm, respectively. Repeated irradiation with short pulses of low laser fluence allows control of the photomodification via incubation, thus reducing bulk damage.

3.
Opt Lett ; 32(2): 190-2, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17186060

RESUMO

Femtosecond, subablation threshold photomodification of poly(methyl methacrylate) (PMMA) at 387 nm is explored to enable fabrication of optical components. Volatile fragment analysis (thermal desorption gas chromatography-mass spectrometry) and molecular weight distribution monitoring (size exclusion chromatography) suggest photochemical modification, involving direct cleavage of the polymer backbone and propagation via chain unzipping under formation of monomers, similar to the pyrolytic degradation of PMMA. Waveguides were produced in undoped, clinical-grade PMMA, showing an increased refractive index in the laser focal region (Dnmax=4x10(-3)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...