Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 18(2): 223-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26247396

RESUMO

The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity, leading us to propose that Cdt toxicity is the result of PIP3 depletion and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signalling. To further explore this relationship, we have focused our analysis on identifying residues that comprise the catalytic pocket and are critical to substrate binding rather than catalysis. In this context, we have generated several CdtB mutants and demonstrate that, in each instance, the ability of the toxin to induce cell cycle arrest correlates with retention of phosphatase activity. We have also assessed the effect of Cdt on downstream components of the PI-3K signalling pathway. In addition to depletion of intracellular concentrations of PIP3, toxin-treated lymphocytes exhibit decreases in pAkt and pGSK3ß. Further analysis indicates that toxin-treated cells exhibit a concomitant loss in Akt activity and increase in GSK3ß kinase activity consistent with observed changes in their phosphorylation status. We demonstrate that cell susceptibility to Cdt is dependent upon dephosphorylation and concomitant activation of GSK3ß. Finally, we demonstrate that, in addition to lymphocytes, HeLa cells exposed to a CdtB mutant that retains phosphatase activity and not DNase activity undergo G2 arrest in the absence of H2AX phosphorylation. Our results provide further insight into the mode of action by which Cdt may function as an immunotoxin and induce cell cycle arrest in target cells such as lymphocytes.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Toxinas Bacterianas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Toxinas Bacterianas/genética , Pontos de Checagem do Ciclo Celular , Sobrevivência Celular , Análise Mutacional de DNA , Células Epiteliais/fisiologia , Células HeLa , Humanos , Células Jurkat , Linfócitos/fisiologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfatos de Fosfatidilinositol/genética , Ligação Proteica , Transdução de Sinais
2.
Infect Immun ; 83(10): 4042-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26216427

RESUMO

Induction of cell cycle arrest in lymphocytes following exposure to the Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is dependent upon the integrity of lipid membrane microdomains. Moreover, we have previously demonstrated that the association of Cdt with target cells involves the CdtC subunit which binds to cholesterol via a cholesterol recognition amino acid consensus sequence (CRAC site). In this study, we demonstrate that the active Cdt subunit, CdtB, also is capable of binding to large unilamellar vesicles (LUVs) containing cholesterol. Furthermore, CdtB binding to cholesterol involves a similar CRAC site as that demonstrated for CdtC. Mutation of the CRAC site reduces binding to model membranes as well as toxin binding and CdtB internalization in both Jurkat cells and human macrophages. A concomitant reduction in Cdt-induced toxicity was also noted, indicated by reduced cell cycle arrest and apoptosis in Jurkat cells and a reduction in the proinflammatory response in macrophages (interleukin 1ß [IL-1ß] and tumor necrosis factor alpha [TNF-α] release). Collectively, these observations indicate that membrane cholesterol serves as an essential ligand for both CdtC and CdtB and, further, that this binding is necessary for both internalization of CdtB and subsequent molecular events leading to intoxication of cells.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Colesterol/metabolismo , Infecções por Pasteurellaceae/microbiologia , Aggregatibacter actinomycetemcomitans/química , Aggregatibacter actinomycetemcomitans/genética , Motivos de Aminoácidos , Toxinas Bacterianas/genética , Humanos , Interleucina-1beta/imunologia , Macrófagos/imunologia , Infecções por Pasteurellaceae/imunologia , Infecções por Pasteurellaceae/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Infect Immun ; 83(4): 1487-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644004

RESUMO

The cytolethal distending toxin (Cdt) is produced from a number of bacteria capable of causing infection and inflammatory disease. Our previous studies with Actinobacillus actinomycetemcomitans Cdt demonstrate not only that the active toxin subunit functions as a phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase but also that macrophages exposed to the toxin were stimulated to produce proinflammatory cytokines. We now demonstrate that the Cdt-induced proinflammatory response involves the activation of the NLRP3 inflammasome. Specific inhibitors and short hairpin RNA (shRNA) were employed to demonstrate requirements for NLRP3 and ASC as well as caspase-1. Furthermore, Cdt-mediated inflammasome activation is dependent upon upstream signals, including reactive oxygen species (ROS) generation and Cdt-induced increases in extracellular ATP levels. Increases in extracellular ATP levels contribute to the activation of the P2X7 purinergic receptor, leading to K+ efflux. The relationship between the abilities of the active toxin subunit CdtB to function as a lipid phosphatase, activate the NLRP3 inflammasome, and induce a proinflammatory cytokine response is discussed. These studies provide new insight into the virulence potential of Cdt in mediating the pathogenesis of disease caused by Cdt-producing organisms such as Aggregatibacter actinomycetemcomitans.


Assuntos
Toxinas Bacterianas/imunologia , Proteínas de Transporte/imunologia , Citocinas/metabolismo , Inflamassomos/imunologia , Macrófagos/imunologia , Trifosfato de Adenosina/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Caspase 1/imunologia , Linhagem Celular Tumoral , Ativação Enzimática/imunologia , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Interleucina-18/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Monoéster Fosfórico Hidrolases/metabolismo , Potássio/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...