Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mech Ageing Dev ; 205: 111686, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609733

RESUMO

Recent evidence demonstrates that Crocus sativus L. (saffron) counteracts oxidative stress, mitochondrial dysfunction and neuroinflammation, closely linked to initiation and progression of major brain pathologies. Interestingly, saffron constituents such as crocin, crocetin and safranal can exert antioxidant or toxic effects depending on their endogenous concentration. According to the hormesis principles, at low dose they act as antioxidants in a wide range of brain diseases by upregulating Nrf2 signaling pathway and the expression of vitagenes, such as NAD(P)H-quinone oxidoreductase (NQO1), glutathione transferase (GT), heme oxygenase-1 (HO-1), sirtuin-1 (Sirt1) and thioredoxin (Trx) system. Importantly, neuronal dysregulation of Nrf2 pathway can be a prominent cause of selective susceptibility, under neuroinflammatory conditions, due to the high vulnerability of brain cells to oxidative stress. Here we discuss natural inducers from saffron targeting Nrf2/vitagene pathway for development of new therapeutical strategies to suppress oxidative stress and neuroinflammation and consequently cognitive dysfunction. In this review we also focus on the hormetic effect of saffron active constituents, summarizing their neuroprotective and anti-neuroinflammatory properties, as well as pharmacological perspectives in brain disorders.


Assuntos
Encefalopatias , Crocus , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Fator 2 Relacionado a NF-E2 , Oxirredução , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
2.
Immun Ageing ; 13: 23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27398086

RESUMO

BACKGROUND: There has been a recent upsurge of interest in complementary medicine, especially dietary supplements and foods functional in delaying the onset of age-associated neurodegenerative diseases. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as antitumor, antioxidant, antiviral, antibacterial and hepatoprotective agent also capable to stimulate host immune responses. RESULTS: Here we provide evidence of neuroprotective action of Hericium Herinaceus when administered orally to rat. Expression of Lipoxin A4 (LXA4) was measured in different brain regions after oral administration of a biomass Hericium preparation, given for 3 month. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, Heme oxygenase -1 and Thioredoxin. In the brain of rats receiving Hericium, maximum induction of LXA4 was observed in cortex, and hippocampus followed by substantia Nigra, striatum and cerebellum. Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is a fundamental cause in neurodegenerative diseases. As prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and Lipoxin A4. Emerging interest is now focussing on molecules capable of activating the vitagene system as novel therapeutic target to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. LXA4 is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. In addition, Hsp system is emerging as key pathway for modulation to prevent neuronal dysfunction, caused by protein misfolding. CONCLUSIONS: Conceivably, activation of LXA4 signaling and modulation of stress responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage.

3.
Neurotoxicology ; 53: 350-358, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26433056

RESUMO

Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is an early pathological feature in neurodegenerative diseases. As a prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a potential neurohormetic target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and lipoxin A4. Emerging interest is now focusing on molecules capable of activating the vitagene system as novel therapeutic targets to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. Mushroom-derived lipoxin A4 (LXA4) is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous "braking signal" in the inflammatory process. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as rich source of polysaccharopeptides endowed with significant antitumor, antioxidant, antiviral, antibacterial and cytoprotective effects, thereby capable of stimulating host immune responses. Here we provide evidence of a neuroprotective action of the Coriolus mushroom when administered orally to rat. Expression of LXA4 was measured in different brain regions after oral administration of a Coriolus biomass preparation, given for 30 days. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, heme oxygenase-1 and thioredoxin. In the brain of rats receiving Coriolus, maximum induction of LXA4 was observed in cortex and hippocampus. Hsps induction was associated with no significant changes in IkBα, NFkB and COX-2 brain levels. Conceivably, activation of LXA4 signaling and modulation of stress-responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage.


Assuntos
Encéfalo/metabolismo , Coprinus/metabolismo , Lipoxinas/metabolismo , Estresse Oxidativo/fisiologia , Animais , Coprinus/química , Ciclo-Oxigenase 2/metabolismo , Heme Oxigenase-1 , Proteínas I-kappa B/metabolismo , Rim/metabolismo , Fígado/metabolismo , Linfócitos/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase Tipo II , Oxirredução , Ratos , Ratos Sprague-Dawley , Tiorredoxinas , Fator de Transcrição RelA/metabolismo , Regulação para Cima
4.
J Cell Commun Signal ; 8(4): 369-84, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25381162

RESUMO

Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones, such as cortisol and thyroid hormones which remain stable and hormones with anabolic effects (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Deficiencies in multiple anabolic hormones have been shown to predict health status and longevity in older persons.Unlike female menopause, which is accompanied by an abrupt and permanent cessation of ovarian function (both folliculogenesis and estradiol production), male aging does not result in either cessation of testosterone production nor infertility. Although the circulating serum testosterone concentration does decline with aging, in most men this decrease is small, resulting in levels that are generally within the normal range. Hormone therapy (HT) trials have caused both apprehension and confusion about the overall risks and benefits associated with HT treatment. Stress-response hormesis from a molecular genetic perspective corresponds to the induction by stressors of an adaptive, defensive response, particularly through alteration of gene expression. Increased longevity can be associated with greater resistance to a range of stressors. During aging, a gradual decline in potency of the heat shock response occur and this may prevent repair of protein damage. Conversely, thermal stress or pharmacological agents capable of inducing stress responses, by promoting increased expression of heat-shock proteins, confer protection against denaturation of proteins and restoration of proteome function. If induction of stress resistance increases life span and hormesis induces stress resistance, hormesis most likely result in increased life span. Hormesis describes an adaptive response to continuous cellular stresses, representing a phenomenon where exposure to a mild stressor confers resistance to subsequent, otherwise harmful, conditions of increased stress. This biphasic dose-response relationship, displaying low-dose stimulation and a high-dose inhibition, as adaptive response to detrimental lifestyle factors determines the extent of protection from progression to metabolic diseases such as diabetes and more in general to hormonal dysregulation and age-related pathologies. Integrated responses exist to detect and control diverse forms of stress. This is accomplished by a complex network of the so-called longevity assurance processes, which are composed of several genes termed vitagenes. Vitagenes encode for heat shock proteins (Hsps), thioredoxin and sirtuin protein systems. Nutritional antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways under control of Vitagene protein network. Here we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against functional defects leading to degeneration and cell death with consequent impact on longevity processes.

5.
Biochim Biophys Acta ; 1822(5): 729-36, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22186191

RESUMO

Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status a cellular adaptive response occurs requiring functional chaperones, antioxidant production and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring plasma reduced and oxidized glutathione, as well as pentosidine, protein carbonyls lipid oxidation products 4-hydroxy-2-nonenal and F2-isoprostanes in plasma, and lymphocytes, whereas the lymphocyte levels of the heat shock proteins (HSP) HO-1, Hsp72, Sirtuin-1, Sirtuin-2 and thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. Plasma GSH/GSSG showed a significant decrease in type 2 diabetes as compared to control group, associated with increased pentosidine, F2-isoprostanes, carbonyls and HNE levels. In addition, lymphocyte levels of HO-1, Hsp70, Trx and TrxR-1 (P<0.05 and P<0.01) in diabetic patients were higher than in normal subjects, while sirtuin-1 and sirtuin-2 protein was significantly decreased (p<0.05). In conclusion, patients affected by type 2 diabetes are under condition of systemic oxidative stress and, although the relevance of downregulation in sirtuin signal has to be fully understood, however induction of HSPs and thioredoxin protein system represent a maintained response in counteracting systemic pro-oxidant status. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Sirtuínas/metabolismo , Adulto , Idoso , Western Blotting , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...