Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 28(7): 830-846.e9, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32433991

RESUMO

Liver receptor homolog-1 (LRH-1; NR5A2) is a nuclear receptor that regulates a diverse array of biological processes. In contrast to dimeric nuclear receptors, LRH-1 is an obligate monomer and contains a subtype-specific helix at the C terminus of the DNA-binding domain (DBD), termed FTZ-F1. Although detailed structural information is available for individual domains of LRH-1, it is unknown how these domains exist in the intact nuclear receptor. Here, we developed an integrated structural model of human full-length LRH-1 using a combination of HDX-MS, XL-MS, Rosetta computational docking, and SAXS. The model predicts the DBD FTZ-F1 helix directly interacts with ligand binding domain helix 2. We confirmed several other predicted inter-domain interactions via structural and functional analyses. Comparison between the LRH-1/Dax-1 co-crystal structure and the integrated model predicted and confirmed Dax-1 co-repressor to modulate LRH-1 inter-domain dynamics. Together, these data support individual LRH-1 domains interacting to influence receptor structure and function.


Assuntos
Simulação de Dinâmica Molecular , Receptores Citoplasmáticos e Nucleares/química , Sítios de Ligação , DNA/química , DNA/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo
2.
Sci Rep ; 8(1): 16672, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420721

RESUMO

Inositol polyphosphate multikinase (IPMK) is a member of the IPK-superfamily of kinases, catalyzing phosphorylation of several soluble inositols and the signaling phospholipid PI(4,5)P2 (PIP2). IPMK also has critical non-catalytic roles in p53, mTOR/Raptor, TRAF6 and AMPK signaling mediated partly by two disordered domains. Although IPMK non-catalytic functions are well established, it is less clear if the disordered domains are important for IPMK kinase activity or ATP binding. Here, kinetic and structural analyses of an engineered human IPMK lacking all disordered domains (ΔIPMK) are presented. Although the KM for PIP2 is identical between ΔIPMK and wild type, ΔIPMK has a 1.8-fold increase in kcat for PIP2, indicating the native IPMK disordered domains decrease IPMK activity in vitro. The 2.5 Å crystal structure of ΔIPMK is reported, confirming the conserved ATP-grasp fold. A comparison with other IPK-superfamily structures revealed a putative "ATP-clamp" in the disordered N-terminus, we predicted would stabilize ATP binding. Consistent with this observation, removal of the ATP clamp sequence increases the KM for ATP 4.9-fold, indicating the N-terminus enhances ATP binding to IPMK. Together, these structural and kinetic studies suggest in addition to mediating protein-protein interactions, the disordered domains of IPMK impart modulatory capacity to IPMK kinase activity through multiple kinetic mechanisms.


Assuntos
Trifosfato de Adenosina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Cristalografia , Humanos , Fosfatos de Inositol/metabolismo , Cinética , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Transdução de Sinais
3.
Adv Biol Regul ; 63: 6-14, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27838257

RESUMO

Nuclear receptors are ligand-activated transcription factors whose diverse biological functions are classically regulated by cholesterol-based small molecules. Over the past few decades, a growing body of evidence has demonstrated that phospholipids and other similar amphipathic molecules can also specifically bind and functionally regulate the activity of certain nuclear receptors, suggesting a critical role for these non-cholesterol-based molecules in transcriptional regulation. Phosphatidylcholines, phosphoinositides and sphingolipids are a few of the many phospholipid like molecules shown to quite specifically regulate nuclear receptors in mouse models, cell lines and in vitro. More recent evidence has also shown that certain nuclear receptors can "present" a bound phospholipid headgroup to key lipid signaling enzymes, which can then modify the phospholipid headgroup with very unique kinetic properties. Here, we review the broad array of phospholipid/nuclear receptor interactions, from the perspective of the chemical nature of the phospholipid, and the cellular abundance of the phospholipid. We also view the data in the light of well established paradigms for phospholipid mediated transcriptional regulation, as well as newer models of how phospholipids might effect transcription in the acute regulation of complex nuclear signaling pathways. Thus, this review provides novel insight into the new, non-membrane associated roles nuclear phospholipids play in regulating complex nuclear events, centered on the nuclear receptor superfamily of transcription factors.


Assuntos
Regulação da Expressão Gênica , Fosfolipídeos/química , Receptores Citoplasmáticos e Nucleares/química , Fatores de Transcrição/química , Animais , Humanos , Ligantes , Camundongos , Modelos Moleculares , Fosfolipídeos/classificação , Fosfolipídeos/metabolismo , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/classificação , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...