Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2999, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38316851

RESUMO

Endocrine-disrupting chemicals (EDCs) pose a significant threat to human well-being and the ecosystem. However, in managing the many thousands of uncharacterized chemical entities, the high-throughput screening of EDCs using relevant biological endpoints remains challenging. Three-dimensional (3D) culture technology enables the development of more physiologically relevant systems in more realistic biochemical microenvironments. The high-content and quantitative imaging techniques enable quantifying endpoints associated with cell morphology, cell-cell interaction, and microtissue organization. In the present study, 3D microtissues formed by MCF-7 breast cancer cells were exposed to the model EDCs estradiol (E2) and propyl pyrazole triol (PPT). A 3D imaging and image analysis pipeline was established to extract quantitative image features from estrogen-exposed microtissues. Moreover, a machine-learning classification model was built using estrogenic-associated differential imaging features. Based on 140 common differential image features found between the E2 and PPT group, the classification model predicted E2 and PPT exposure with AUC-ROC at 0.9528 and 0.9513, respectively. Deep learning-assisted analysis software was developed to characterize microtissue gland lumen formation. The fully automated tool can accurately characterize the number of identified lumens and the total luminal volume of each microtissue. Overall, the current study established an integrated approach by combining non-supervised image feature profiling and supervised luminal volume characterization, which reflected the complexity of functional ER signaling and highlighted a promising conceptual framework for estrogenic EDC risk assessment.


Assuntos
Disruptores Endócrinos , Estrogênios , Humanos , Células MCF-7 , Ecossistema , Estradiol , Estrona , Aprendizado de Máquina
2.
Res Sq ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37886543

RESUMO

Endocrine-disrupting chemicals (EDCs) pose a significant threat to human well-being and the ecosystem. However, in managing the many thousands of uncharacterized chemical entities, the high-throughput screening of EDCs using relevant biological endpoints remains challenging. Three-dimensional (3D) culture technology enables the development of more physiologically relevant systems in more realistic biochemical microenvironments. The high-content and quantitative imaging techniques enable quantifying endpoints associated with cell morphology, cell-cell interaction, and microtissue organization. In the present study, 3D microtissues formed by MCF-7 breast cancer cells were exposed to the model EDCs estradiol (E2) and propyl pyrazole triol (PPT). A 3D imaging and image analysis pipeline was established to extract quantitative image features from estrogen-exposed microtissues. Moreover, a machine-learning classification model was built using estrogenic-associated differential imaging features. Based on 140 common differential image features found between the E2 and PPT group, the classification model predicted E2 and PPT exposure with AUC-ROC at 0.9528 and 0.9513, respectively. Deep learning-assisted analysis software was developed to characterize microtissue gland lumen formation. The fully automated tool can accurately characterize the number of identified lumens and the total luminal volume of each microtissue. Overall, the current study established an integrated approach by combining non-supervised image feature profiling and supervised luminal volume characterization, which reflected the complexity of functional ER signaling and highlighted a promising conceptual framework for estrogenic EDC risk assessment.

3.
Sci Rep ; 10(1): 6558, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300136

RESUMO

Mucopolysaccharidosis (MPS) is a metabolic storage disorder caused by the deficiency of any lysosomal enzyme required for the breakdown of glycosaminoglycans. A 15-month-old Boston Terrier presented with clinical signs consistent with lysosomal storage disease including corneal opacities, multifocal central nervous system disease and progressively worsening clinical course. Diagnosis was confirmed at necropsy based on histopathologic evaluation of multiple organs demonstrating accumulation of mucopolysaccharides. Whole genome sequencing was used to uncover a frame-shift insertion affecting the alpha-L-iduronidase (IDUA) gene (c.19_20insCGGCCCCC), a mutation confirmed in another Boston Terrier presented 2 years later with a similar clinical picture. Both dogs were homozygous for the IDUA mutation and shared coat colors not recognized as normal for the breed by the American Kennel Club. In contrast, the mutation was not detected in 120 unrelated Boston Terriers as well as 202 dogs from other breeds. Recent inbreeding to select for recessive and unusual coat colors may have concentrated this relatively rare allele in the breed. The identification of the variant enables ante-mortem diagnosis of similar cases and selective breeding to avoid the spread of this disease in the breed. Boston Terriers carrying this variant represent a promising model for MPS I with neurological abnormalities in humans.


Assuntos
Cães/genética , Mucopolissacaridose I/genética , Mucopolissacaridose I/veterinária , Mutação/genética , Sequenciamento Completo do Genoma , Animais , Sequência de Bases , Feminino , Mucopolissacaridose I/diagnóstico por imagem , Mucopolissacaridose I/patologia
4.
Birth Defects Res ; 109(2): 169-179, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27933721

RESUMO

BACKGROUND: Single genetic variants can affect multiple tissues during development. Thus it is possible that disruption of shared gene regulatory networks might underlie syndromic presentations. In this study, we explore this idea through examination of two critical developmental programs that control orofacial and neural tube development and identify shared regulatory factors and networks. Identification of these networks has the potential to yield additional candidate genes for poorly understood developmental disorders and assist in modeling and perhaps managing risk factors to prevent morbidly and mortality. METHODS: We reviewed the literature to identify genes common between orofacial and neural tube defects and development. We then conducted a bioinformatic analysis to identify shared molecular targets and pathways in the development of these tissues. Finally, we examine publicly available RNA-Seq data to identify which of these genes are expressed in both tissues during development. RESULTS: We identify common regulatory factors in orofacial and neural tube development. Pathway enrichment analysis shows that folate, cancer and hedgehog signaling pathways are shared in neural tube and orofacial development. Developing neural tissues differentially express mouse exencephaly and cleft palate genes, whereas developing orofacial tissues were enriched for both clefting and neural tube defect genes. CONCLUSION: These data suggest that key developmental factors and pathways are shared between orofacial and neural tube defects. We conclude that it might be most beneficial to focus on common regulatory factors and pathways to better understand pathology and develop preventative measures for these birth defects. Birth Defects Research 109:169-179, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Defeitos do Tubo Neural/genética , Neurulação/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Fenda Labial/metabolismo , Fenda Labial/patologia , Fissura Palatina/metabolismo , Fissura Palatina/patologia , Biologia Computacional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mineração de Dados , Desenvolvimento Embrionário/genética , Redes Reguladoras de Genes , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Mutação , Tubo Neural/anormalidades , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/metabolismo , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Organogênese/genética , Transdução de Sinais , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...