Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 46(1): 124-133, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27775841

RESUMO

PURPOSE: To present the testretest and contrast dose effect results of cerebral blood volume (CBV) functional MRI (fMRI) in healthy human volunteers using ferumoxytol (Feraheme), an ultrasmall-superparamagnetic iron oxide (USPIO) nanoparticle. MATERIALS AND METHODS: This was an open-label, two-period, fixed-sequence study in healthy young volunteers. In eight subjects, using a 3 Tesla field strength system, blood oxygen level dependent (BOLD) and CBV fMRI were acquired in response to a visual black-and-white checkboard stimulation paradigm using an escalating ferumoxytol dose design (250, 350, and 510 mg iron). Multiple outcome measures were analyzed including absolute percent signal change (|PSC|, primary endpoint), its contrast-to-noise ratio (CNR) and corresponding z-score, percent CBV change (ΔCBV) and respective CNR, concentration of Fe, and baseline CBV. RESULTS: The |PSC| in the visual cortex increased with ferumoxytol dose and was up to 3 × higher than BOLD fMRI. Test-retest reliability was comparable for BOLD and CBV fMRI. Intraclass correlation coefficients (ICCs) for |PSC| were 0.3 (one-sided 95% lower confidence limit = 0.00), 0.81 (0.47), 0.48 (0.00), and 0.3 (0.00) for BOLD and the 250-, 350-, and 510-mg doses of ferumoxytol, respectively. For ΔCBV, ICCs were 0.77 (0.37), 0.48 (0.00), and 0.49 (0.00) for 250 mg, 350 mg, and 510 mg, respectively. CONCLUSION: This work demonstrates that CBV fMRI techniques and endpoints are dose dependent, robust and have good test-retest repeatability. It also confirms previous findings that USPIO enhances sensitivity of fMRI stimulus-response endpoints. LEVEL OF EVIDENCE: 1 J. MAGN. RESON. IMAGING 2017;46:124-133.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular , Dextranos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/administração & dosagem , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Volume Sanguíneo , Determinação do Volume Sanguíneo/métodos , Mapeamento Encefálico/métodos , Meios de Contraste/administração & dosagem , Relação Dose-Resposta a Droga , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
PLoS One ; 11(6): e0156805, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27309348

RESUMO

BACKGROUND: Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. METHODOLOGY: Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). PRINCIPAL FINDINGS: Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. CONCLUSIONS: These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate the preclinical efficacy of novel analgesics.


Assuntos
Capsaicina/efeitos adversos , Cerebelo/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Hiperalgesia/diagnóstico por imagem , Dor/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/fisiopatologia , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/fisiopatologia , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiopatologia , Temperatura Alta , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Injeções Subcutâneas , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Dor/induzido quimicamente , Dor/fisiopatologia , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiopatologia , Cauda , Sensação Térmica/fisiologia
3.
PLoS One ; 9(10): e110432, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337714

RESUMO

BACKGROUND: Pharmacological MRI (phMRI) is a neuroimaging technique where drug-induced hemodynamic responses can represent a pharmacodynamic biomarker to delineate underlying biological consequences of drug actions. In most preclinical studies, animals are anesthetized during image acquisition to minimize movement. However, it has been demonstrated anesthesia could attenuate basal neuronal activity, which can confound interpretation of drug-induced brain activation patterns. Significant efforts have been made to establish awake imaging in rodents and nonhuman primates (NHP). Whilst various platforms have been developed for imaging awake NHP, comparison and validation of phMRI data as translational biomarkers across species remain to be explored. METHODOLOGY: We have established an awake NHP imaging model that encompasses comprehensive acclimation procedures with a dedicated animal restrainer. Using a cerebral blood volume (CBV)-based phMRI approach, we have determined differential responses of brain activation elicited by the systemic administration of buprenorphine (0.03 mg/kg i.v.), a partial µ-opioid receptor agonist, in the same animal under awake and anesthetized conditions. Additionally, region-of-interest analyses were performed to determine regional drug-induced CBV time-course data and corresponding area-under-curve (AUC) values from brain areas with high density of µ-opioid receptors. PRINCIPAL FINDINGS: In awake NHPs, group-level analyses revealed buprenorphine significantly activated brain regions including, thalamus, striatum, frontal and cingulate cortices (paired t-test, versus saline vehicle, p<0.05, n = 4). This observation is strikingly consistent with µ-opioid receptor distribution depicted by [6-O-[(11)C]methyl]buprenorphine ([(11)C]BPN) positron emission tomography imaging study in baboons. Furthermore, our findings are consistent with previous buprenorphine phMRI studies in humans and conscious rats which collectively demonstrate the cross-species translatability of awake imaging. Conversely, no significant change in activated brain regions was found in the same animals imaged under the anesthetized condition. CONCLUSIONS: Our data highlight the utility and importance of awake NHP imaging as a translational imaging biomarker for drug research.


Assuntos
Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Corpo Estriado/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Anestesia Geral , Animais , Corpo Estriado/fisiologia , Feminino , Lobo Frontal/fisiologia , Giro do Cíngulo/fisiologia , Macaca fascicularis/fisiologia , Imageamento por Ressonância Magnética/métodos , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Tálamo/fisiologia , Pesquisa Translacional Biomédica , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...