Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Aspects Med ; 59: 47-61, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28927942

RESUMO

Single-cell technology has a major impact on the field of immunology. It enables the kinetics and logic of immune signaling and immune cell migration to be elucidated, facilitates antibody screening and allows massively parallelized analysis of B- and T-cell repertoires. Impressive progress has been made over the last decade, strongly boosted by microfluidic approaches. In this review, we summarize the most powerful microfluidic systems based on continuous flow, nanowells, valves and droplets and we analyze their benefits for phenotypic characterization, drug discovery and next generation sequencing experiments. We describe current limitations and provide an outlook on important future applications.


Assuntos
Microfluídica/métodos , Análise de Célula Única/métodos , Animais , Descoberta de Drogas/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
3.
Int J Mol Sci ; 16(12): 28614-34, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26633382

RESUMO

Embryonic stem cells (ESCs) are chiefly characterized by their ability to self-renew and to differentiate into any cell type derived from the three main germ layers. It was demonstrated that somatic cells could be reprogrammed to form induced pluripotent stem cells (iPSCs) via various strategies. Gene editing is a technique that can be used to make targeted changes in the genome, and the efficiency of this process has been significantly enhanced by recent advancements. The use of engineered endonucleases, such as homing endonucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Cas9 of the CRISPR system, has significantly enhanced the efficiency of gene editing. The combination of somatic cell reprogramming with gene editing enables us to model human diseases in vitro, in a manner considered superior to animal disease models. In this review, we discuss the various strategies of reprogramming and gene targeting with an emphasis on the current advancements and challenges of using these techniques to model human diseases.


Assuntos
Reprogramação Celular , Marcação de Genes , Engenharia Genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Animais , Sistemas CRISPR-Cas , Humanos , Transgenes
4.
Cell ; 163(1): 230-45, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26365490

RESUMO

Embryonic stem cells (ESCs) repress the expression of exogenous proviruses and endogenous retroviruses (ERVs). Here, we systematically dissected the cellular factors involved in provirus repression in embryonic carcinomas (ECs) and ESCs by a genome-wide siRNA screen. Histone chaperones (Chaf1a/b), sumoylation factors (Sumo2/Ube2i/Sae1/Uba2/Senp6), and chromatin modifiers (Trim28/Eset/Atf7ip) are key determinants that establish provirus silencing. RNA-seq analysis uncovered the roles of Chaf1a/b and sumoylation modifiers in the repression of ERVs. ChIP-seq analysis demonstrates direct recruitment of Chaf1a and Sumo2 to ERVs. Chaf1a reinforces transcriptional repression via its interaction with members of the NuRD complex (Kdm1a, Hdac1/2) and Eset, while Sumo2 orchestrates the provirus repressive function of the canonical Zfp809/Trim28/Eset machinery by sumoylation of Trim28. Our study reports a genome-wide atlas of functional nodes that mediate proviral silencing in ESCs and illuminates the comprehensive, interconnected, and multi-layered genetic and epigenetic mechanisms by which ESCs repress retroviruses within the genome.


Assuntos
Células-Tronco Embrionárias/virologia , Retrovirus Endógenos/genética , Provírus/genética , Animais , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Células-Tronco de Carcinoma Embrionário/virologia , Epigênese Genética , Camundongos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...