Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 19(1): 265, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012095

RESUMO

BACKGROUND: Netpredictor is an R package for prediction of missing links in any given unipartite or bipartite network. The package provides utilities to compute missing links in a bipartite and well as unipartite networks using Random Walk with Restart and Network inference algorithm and a combination of both. The package also allows computation of Bipartite network properties, visualization of communities for two different sets of nodes, and calculation of significant interactions between two sets of nodes using permutation based testing. The application can also be used to search for top-K shortest paths between interactome and use enrichment analysis for disease, pathway and ontology. The R standalone package (including detailed introductory vignettes) and associated R Shiny web application is available under the GPL-2 Open Source license and is freely available to download. RESULTS: We compared different algorithms performance in different small datasets and found random walk supersedes rest of the algorithms. The package is developed to perform network based prediction of unipartite and bipartite networks and use the results to understand the functionality of proteins in an interactome using enrichment analysis. CONCLUSION: The rapid application development envrionment like shiny, helps non programmers to develop fast rich visualization apps and we beleieve it would continue to grow in future with further enhancements. We plan to update our algorithms in the package in near future and help scientist to analyse data in a much streamlined fashion.


Assuntos
Algoritmos , Sistemas de Liberação de Medicamentos , Ontologia Genética , Mapas de Interação de Proteínas , Software
2.
BMC Bioinformatics ; 17: 160, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27071755

RESUMO

BACKGROUND: In the context of drug discovery, drug target interactions (DTIs) can be predicted based on observed topological features of a semantic network across the chemical and biological space. In a semantic network, the types of the nodes and links are different. In order to take into account the heterogeneity of the semantic network, meta-path-based topological patterns were investigated for link prediction. RESULTS: Supervised machine learning models were constructed based on meta-path topological features of an enriched semantic network, which was derived from Chem2Bio2RDF, and was expanded by adding compound and protein similarity neighboring links obtained from the PubChem databases. The additional semantic links significantly improved the predictive performance of the supervised learning models. The binary classification model built upon the enriched feature space using the Random Forest algorithm significantly outperformed an existing semantic link prediction algorithm, Semantic Link Association Prediction (SLAP), to predict unknown links between compounds and protein targets in an evolving network. In addition to link prediction, Random Forest also has an intrinsic feature ranking algorithm, which can be used to select the important topological features that contribute to link prediction. CONCLUSIONS: The proposed framework has been demonstrated as a powerful alternative to SLAP in order to predict DTIs using the semantic network that integrates chemical, pharmacological, genomic, biological, functional, and biomedical information into a unified framework. It offers the flexibility to enrich the feature space by using different normalization processes on the topological features, and it can perform model construction and feature selection at the same time.


Assuntos
Desenho de Fármacos , Aprendizado de Máquina , Preparações Farmacêuticas/química , Mineração de Dados , Bases de Dados Factuais , Modelos Químicos , Fenômenos Farmacológicos , Proteínas/química
3.
J Cheminform ; 7: 40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300984

RESUMO

BACKGROUND: Predicting novel drug-target associations is important not only for developing new drugs, but also for furthering biological knowledge by understanding how drugs work and their modes of action. As more data about drugs, targets, and their interactions becomes available, computational approaches have become an indispensible part of drug target association discovery. In this paper we apply random walk with restart (RWR) method to a heterogeneous network of drugs and targets compiled from DrugBank database and investigate the performance of the method under parameter variation and choice of chemical fingerprint methods. RESULTS: We show that choice of chemical fingerprint does not affect the performance of the method when the parameters are tuned to optimal values. We use a subset of the ChEMBL15 dataset that contains 2,763 associations between 544 drugs and 467 target proteins to evaluate our method, and we extracted datasets of bioactivity ≤1 and ≤10 µM activity cutoff. For 1 µM bioactivity cutoff, we find that our method can correctly predict nearly 47, 55, 60% of the given drug-target interactions in the test dataset having more than 0, 1, 2 drug target relations for ChEMBL 1 µM dataset in top 50 rank positions. For 10 µM bioactivity cutoff, we find that our method can correctly predict nearly 32.4, 34.8, 35.3% of the given drug-target interactions in the test dataset having more than 0, 1, 2 drug target relations for ChEMBL 1 µM dataset in top 50 rank positions. We further examine the associations between 110 popular top selling drugs in 2012 and 3,519 targets and find the top ten targets for each drug. CONCLUSIONS: We demonstrate the effectiveness and promise of the approach-RWR on heterogeneous networks using chemical features-for identifying novel drug target interactions and investigate the performance.

4.
Int J Bioinform Res Appl ; 10(3): 264-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24794070

RESUMO

Single Nucleotide Polymorphism (SNP) is a mutation where, a single base in the DNA differs from the usual base at that position. SNPs are the marker of choice in genetic analysis and also useful in locating genes associated with diseases. SNPs are important and frequently occurring point mutations in genomes and have many practical implications. In silico methods are easy to study the SNPs that are occurring in known genomes or sequences of a species of interest during the post genomic era. There are many on-line and stand alone tools to analyse the SNPs. We intend to guide the reader with the software details such as algorithmic background, file requirements, operating system specificity and species specificity, if any, for the tools of SNPs detection in plants and animals. We also list many databases and resources available today to describe SNPs in wide range of organisms.


Assuntos
Análise Mutacional de DNA/métodos , DNA/genética , Bases de Dados Genéticas , Mutação INDEL/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Software , Algoritmos , Animais , Sequência de Bases , Mineração de Dados/métodos , Humanos , Dados de Sequência Molecular
5.
J Cheminform ; 5(1): 2, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23317154

RESUMO

BACKGROUND: Mycobacterium tuberculosis encodes 11 putative serine-threonine proteins Kinases (STPK) which regulates transcription, cell development and interaction with the host cells. From the 11 STPKs three kinases namely PknA, PknB and PknG have been related to the mycobacterial growth. From previous studies it has been observed that PknB is essential for mycobacterial growth and expressed during log phase of the growth and phosphorylates substrates involved in peptidoglycan biosynthesis. In recent years many high affinity inhibitors are reported for PknB. Previously implementation of data fusion has shown effective enrichment of active compounds in both structure and ligand based approaches .In this study we have used three types of data fusion ranking algorithms on the PknB dataset namely, sum rank, sum score and reciprocal rank. We have identified reciprocal rank algorithm is capable enough to select compounds earlier in a virtual screening process. We have also screened the Asinex database with reciprocal rank algorithm to identify possible inhibitors for PknB. RESULTS: In our work we have used both structure-based and ligand-based approaches for virtual screening, and have combined their results using a variety of data fusion methods. We found that data fusion increases the chance of actives being ranked highly. Specifically, we found that the ranking of Pharmacophore search, ROCS and Glide XP fused with a reciprocal ranking algorithm not only outperforms structure and ligand based approaches but also capable of ranking actives better than the other two data fusion methods using the BEDROC, robust initial enhancement (RIE) and AUC metrics. These fused results were used to identify 45 candidate compounds for further experimental validation. CONCLUSION: We show that very different structure and ligand based methods for predicting drug-target interactions can be combined effectively using data fusion, outperforming any single method in ranking of actives. Such fused results show promise for a coherent selection of candidates for biological screening.

6.
J Cheminform ; 4(1): 10, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22587596

RESUMO

BACKGROUND: Experimental screening of chemical compounds for biological activity is a time consuming and expensive practice. In silico predictive models permit inexpensive, rapid "virtual screening" to prioritize selection of compounds for experimental testing. Both experimental and in silico screening can be used to test compounds for desirable or undesirable properties. Prior work on prediction of mutagenicity has primarily involved identification of toxicophores rather than whole-molecule predictive models. In this work, we examined a range of in silico predictive classification models for prediction of mutagenic properties of compounds, including methods such as J48 and SMO which have not previously been widely applied in cheminformatics. RESULTS: The Bursi mutagenicity data set containing 4337 compounds (Set 1) and a Benchmark data set of 6512 compounds (Set 2) were taken as input data set in this work. A third data set (Set 3) was prepared by joining up the previous two sets. Classification algorithms including Naïve Bayes, Random Forest, J48 and SMO with 10 fold cross-validation and default parameters were used for model generation on these data sets. Models built using the combined performed better than those developed from the Benchmark data set. Significantly, Random Forest outperformed other classifiers for all the data sets, especially for Set 3 with 89.27% accuracy, 89% precision and ROC of 95.3%. To validate the developed models two external data sets, AID1189 and AID1194, with mutagenicity data were tested showing 62% accuracy with 67% precision and 65% ROC area and 91% accuracy, 91% precision with 96.3% ROC area respectively. A Random Forest model was used on approved drugs from DrugBank and metabolites from the Zinc Database with True Positives rate almost 85% showing the robustness of the model. CONCLUSION: We have created a new mutagenicity benchmark data set with around 8,000 compounds. Our work shows that highly accurate predictive mutagenicity models can be built using machine learning methods based on chemical descriptors and trained using this set, and these models provide a complement to toxicophores based methods. Further, our work supports other recent literature in showing that Random Forest models generally outperform other comparable machine learning methods for this kind of application.

8.
Bioinformation ; 5(10): 430-9, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21423889

RESUMO

Natural products are important sources of drug discovery. In this context groups of different set of phytochemicals were taken and docked into the different cavities of the Reverse transcriptase (PDB ID: 1REV) of Human immunodeficiency virus (HIV) and results were discussed. Natural compounds such as Curcumin, Geranin, Gallotannin, Tiliroside, Kaempferol-3-o-glucoside and Trachelogenin were found to very effective according to its binding energy and ligand efficiency score. Those compounds also were found to have no adverse effect as carcinogenicity and mutagenicity and favorable drug likeness score. Hence, considering the facts those compounds could use effectively for HIV-1 drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...