Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 24(1): 115, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173739

RESUMO

The Vertebrate Gene Nomenclature Committee (VGNC) was established in 2016 as a sister project to the HUGO Gene Nomenclature Committee, to approve gene nomenclature in vertebrate species without an existing dedicated nomenclature committee. The VGNC aims to harmonize gene nomenclature across selected vertebrate species in line with human gene nomenclature, with orthologs assigned the same nomenclature where possible. This article presents an overview of the VGNC project and discussion of key findings resulting from this work to date. VGNC-approved nomenclature is accessible at https://vertebrate.genenames.org and is additionally displayed by the NCBI, Ensembl, and UniProt databases.


Assuntos
Bases de Dados Genéticas , Vertebrados , Animais , Humanos , Vertebrados/genética
2.
Nucleic Acids Res ; 51(D1): D1003-D1009, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36243972

RESUMO

The HUGO Gene Nomenclature Committee (HGNC) assigns unique symbols and names to human genes. The HGNC database (www.genenames.org) currently contains over 43 000 approved gene symbols, over 19 200 of which are assigned to protein-coding genes, 14 000 to pseudogenes and nearly 9000 to non-coding RNA genes. The public website, www.genenames.org, displays all approved nomenclature within Symbol Reports that contain data curated by HGNC nomenclature advisors and links to related genomic, clinical, and proteomic information. Here, we describe updates to our resource, including improvements to our search facility and new download features.


Assuntos
Bases de Dados Genéticas , Humanos , Genoma , Genômica , Proteômica , Pseudogenes , Terminologia como Assunto
3.
IUBMB Life ; 75(5): 380-389, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35880706

RESUMO

The HUGO Gene Nomenclature Committee (HGNC) is the sole group with the authority to approve symbols for human genes, including long non-coding RNA (lncRNA) genes. Use of approved symbols ensures that publications and biomedical databases are easily searchable and reduces the risks of confusion that can be caused by using the same symbol to refer to different genes or using many different symbols for the same gene. Here, we describe how the HGNC names lncRNA genes and review the nomenclature of the seven lncRNA genes most mentioned in the scientific literature.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Bases de Dados Genéticas
4.
Hum Genomics ; 16(1): 58, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380364

RESUMO

The HUGO Gene Nomenclature Committee (HGNC) has been providing standardized symbols and names for human genes since the late 1970s. As funding agencies change their priorities, finding financial support for critical biomedical resources such as the HGNC becomes ever more challenging. In this article, we outline the key roles the HGNC currently plays in aiding communication and the need for these activities to be maintained.


Assuntos
Bases de Dados Genéticas , Genômica , Humanos
5.
Epigenetics Chromatin ; 15(1): 34, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180920

RESUMO

Histones have a long history of research in a wide range of species, leaving a legacy of complex nomenclature in the literature. Community-led discussions at the EMBO Workshop on Histone Variants in 2011 resulted in agreement amongst experts on a revised systematic protein nomenclature for histones, which is based on a combination of phylogenetic classification and historical symbol usage. Human and mouse histone gene symbols previously followed a genome-centric system that was not applicable across all vertebrate species and did not reflect the systematic histone protein nomenclature. This prompted a collaboration between histone experts, the Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC) and Mouse Genomic Nomenclature Committee (MGNC) to revise human and mouse histone gene nomenclature aiming, where possible, to follow the new protein nomenclature whilst conforming to the guidelines for vertebrate gene naming. The updated nomenclature has also been applied to orthologous histone genes in chimpanzee, rhesus macaque, dog, cat, pig, horse and cattle, and can serve as a framework for naming other vertebrate histone genes in the future.


Assuntos
Genômica , Histonas , Animais , Bovinos , Cães , Genoma , Genômica/métodos , Histonas/genética , Cavalos , Humanos , Macaca mulatta , Mamíferos/genética , Camundongos , Filogenia , Suínos
6.
Am J Hum Genet ; 108(10): 1813-1816, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34626580

RESUMO

The use of approved nomenclature in publications is vital to enable effective scientific communication and is particularly crucial when discussing genes of clinical relevance. Here, we discuss several examples of cases where the failure of researchers to use a HUGO Gene Nomenclature Committee (HGNC)-approved symbol in publications has led to confusion between unrelated human genes in the literature. We also inform authors of the steps they can take to ensure that they use approved nomenclature in their manuscripts and discuss how referencing HGNC IDs can remove ambiguity when referring to genes that have previously been published with confusing alias symbols.


Assuntos
Bases de Dados Genéticas/normas , Genes/genética , Genoma Humano , Pesquisadores/normas , Terminologia como Assunto , Genômica , Humanos
7.
Nucleic Acids Res ; 49(D1): D939-D946, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33152070

RESUMO

The HUGO Gene Nomenclature Committee (HGNC) based at EMBL's European Bioinformatics Institute (EMBL-EBI) assigns unique symbols and names to human genes. There are over 42,000 approved gene symbols in our current database of which over 19 000 are for protein-coding genes. While we still update placeholder and problematic symbols, we are working towards stabilizing symbols where possible; over 2000 symbols for disease associated genes are now marked as stable in our symbol reports. All of our data is available at the HGNC website https://www.genenames.org. The Vertebrate Gene Nomenclature Committee (VGNC) was established to assign standardized nomenclature in line with human for vertebrate species lacking their own nomenclature committee. In addition to the previous VGNC core species of chimpanzee, cow, horse and dog, we now name genes in cat, macaque and pig. Gene groups have been added to VGNC and currently include two complex families: olfactory receptors (ORs) and cytochrome P450s (CYPs). In collaboration with specialists we have also named CYPs in species beyond our core set. All VGNC data is available at https://vertebrate.genenames.org/. This article provides an overview of our online data and resources, focusing on updates over the last two years.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genes/genética , Genômica/métodos , Terminologia como Assunto , Vertebrados/genética , Animais , Humanos , Internet , Proteínas/genética , Especificidade da Espécie , Interface Usuário-Computador , Vertebrados/classificação
9.
EMBO J ; 39(6): e103777, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32090359

RESUMO

Research on non-coding RNA (ncRNA) is a rapidly expanding field. Providing an official gene symbol and name to ncRNA genes brings order to otherwise potential chaos as it allows unambiguous communication about each gene. The HUGO Gene Nomenclature Committee (HGNC, www.genenames.org) is the only group with the authority to approve symbols for human genes. The HGNC works with specialist advisors for different classes of ncRNA to ensure that ncRNA nomenclature is accurate and informative, where possible. Here, we review each major class of ncRNA that is currently annotated in the human genome and describe how each class is assigned a standardised nomenclature.


Assuntos
Genoma Humano/genética , RNA não Traduzido/classificação , Terminologia como Assunto , Humanos , RNA não Traduzido/genética
10.
Genome Res ; 29(12): 2073-2087, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31537640

RESUMO

The most widely appreciated role of DNA is to encode protein, yet the exact portion of the human genome that is translated remains to be ascertained. We previously developed PhyloCSF, a widely used tool to identify evolutionary signatures of protein-coding regions using multispecies genome alignments. Here, we present the first whole-genome PhyloCSF prediction tracks for human, mouse, chicken, fly, worm, and mosquito. We develop a workflow that uses machine learning to predict novel conserved protein-coding regions and efficiently guide their manual curation. We analyze more than 1000 high-scoring human PhyloCSF regions and confidently add 144 conserved protein-coding genes to the GENCODE gene set, as well as additional coding regions within 236 previously annotated protein-coding genes, and 169 pseudogenes, most of them disabled after primates diverged. The majority of these represent new discoveries, including 70 previously undetected protein-coding genes. The novel coding genes are additionally supported by single-nucleotide variant evidence indicative of continued purifying selection in the human lineage, coding-exon splicing evidence from new GENCODE transcripts using next-generation transcriptomic data sets, and mass spectrometry evidence of translation for several new genes. Our discoveries required simultaneous comparative annotation of other vertebrate genomes, which we show is essential to remove spurious ORFs and to distinguish coding from pseudogene regions. Our new coding regions help elucidate disease-associated regions by revealing that 118 GWAS variants previously thought to be noncoding are in fact protein altering. Altogether, our PhyloCSF data sets and algorithms will help researchers seeking to interpret these genomes, while our new annotations present exciting loci for further experimental characterization.


Assuntos
Éxons , Genoma Humano , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Análise de Sequência de DNA , Animais , Humanos , Pseudogenes
11.
Nucleic Acids Res ; 47(D1): D786-D792, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30304474

RESUMO

The HUGO Gene Nomenclature Committee (HGNC) based at EMBL's European Bioinformatics Institute (EMBL-EBI) assigns unique symbols and names to human genes. There are over 40 000 approved gene symbols in our current database of which over 19 000 are for protein-coding genes. The Vertebrate Gene Nomenclature Committee (VGNC) was established in 2016 to assign standardized nomenclature in line with human for vertebrate species that lack their own nomenclature committees. The VGNC initially assigned nomenclature for over 15000 protein-coding genes in chimpanzee. We have extended this process to other vertebrate species, naming over 14000 protein-coding genes in cow and dog and over 13 000 in horse to date. Our HGNC website https://www.genenames.org has undergone a major design update, simplifying the homepage to provide easy access to our search tools and making the site more mobile friendly. Our gene families pages are now known as 'gene groups' and have increased in number to over 1200, with nearly half of all named genes currently assigned to at least one gene group. This article provides an overview of our online data and resources, focusing on our work over the last two years.


Assuntos
Biologia Computacional/normas , Bases de Dados Genéticas/normas , Genômica/normas , Terminologia como Assunto , Animais , Bovinos , Cães , Cavalos/genética , Humanos , Pan troglodytes/genética , Ferramenta de Busca
12.
Nucleic Acids Res ; 46(D1): D221-D228, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29126148

RESUMO

The Consensus Coding Sequence (CCDS) project provides a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assembly in genome annotations produced independently by NCBI and the Ensembl group at EMBL-EBI. This dataset is the product of an international collaboration that includes NCBI, Ensembl, HUGO Gene Nomenclature Committee, Mouse Genome Informatics and University of California, Santa Cruz. Identically annotated coding regions, which are generated using an automated pipeline and pass multiple quality assurance checks, are assigned a stable and tracked identifier (CCDS ID). Additionally, coordinated manual review by expert curators from the CCDS collaboration helps in maintaining the integrity and high quality of the dataset. The CCDS data are available through an interactive web page (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and an FTP site (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/). In this paper, we outline the ongoing work, growth and stability of the CCDS dataset and provide updates on new collaboration members and new features added to the CCDS user interface. We also present expert curation scenarios, with specific examples highlighting the importance of an accurate reference genome assembly and the crucial role played by input from the research community.


Assuntos
Sequência Consenso , Bases de Dados Genéticas , Fases de Leitura Aberta , Animais , Curadoria de Dados/métodos , Curadoria de Dados/normas , Bases de Dados Genéticas/normas , Guias como Assunto , Humanos , Camundongos , Anotação de Sequência Molecular , National Library of Medicine (U.S.) , Estados Unidos , Interface Usuário-Computador
13.
Brief Funct Genomics ; 16(4): 205-210, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27899353

RESUMO

It is accepted that confusion regarding the description of genetic variants occurs when researchers do not use standard nomenclature. The Human Genome Organization Gene Nomenclature Committee contacted a panel of consultants, all working on the KAL1 gene, to propose an update of the nomenclature of the gene, as there was a convention in the literature of using the 'KAL1' symbol, when referring to the gene, but using the name 'anosmin-1' when referring to the protein. The new name, ANOS1, reflects protein name and is more transferrable across species.


Assuntos
Proteínas da Matriz Extracelular/genética , Síndrome de Kallmann/genética , Proteínas do Tecido Nervoso/genética , Terminologia como Assunto , Animais , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo
14.
Nucleic Acids Res ; 45(D1): D619-D625, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27799471

RESUMO

The HUGO Gene Nomenclature Committee (HGNC) based at the European Bioinformatics Institute (EMBL-EBI) assigns unique symbols and names to human genes. Currently the HGNC database contains almost 40 000 approved gene symbols, over 19 000 of which represent protein-coding genes. In addition to naming genomic loci we manually curate genes into family sets based on shared characteristics such as homology, function or phenotype. We have recently updated our gene family resources and introduced new improved visualizations which can be seen alongside our gene symbol reports on our primary website http://www.genenames.org In 2016 we expanded our remit and formed the Vertebrate Gene Nomenclature Committee (VGNC) which is responsible for assigning names to vertebrate species lacking a dedicated nomenclature group. Using the chimpanzee genome as a pilot project we have approved symbols and names for over 14 500 protein-coding genes in chimpanzee, and have developed a new website http://vertebrate.genenames.org to distribute these data. Here, we review our online data and resources, focusing particularly on the improvements and new developments made during the last two years.


Assuntos
Bases de Dados Genéticas , Genes , Genoma , Genômica/métodos , Terminologia como Assunto , Vertebrados , Navegador , Animais , Humanos , Família Multigênica , Ferramenta de Busca
15.
Hum Genomics ; 10: 6, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26842383

RESUMO

The HUGO Gene Nomenclature Committee (HGNC) approves unique gene symbols and names for human loci. As well as naming genomic loci, we manually curate genes into family sets based on shared characteristics such as function, homology or phenotype. Each HGNC gene family has its own dedicated gene family report on our website, www.genenames.org . We have recently redesigned these reports to support the visualisation and browsing of complex relationships between families and to provide extra curated information such as family descriptions, protein domain graphics and gene family aliases. Here, we review how our gene families are curated and explain how to view, search and download the gene family data.


Assuntos
Bases de Dados Genéticas , Genômica , Proteínas de Neoplasias/genética , Humanos , Internet , Proteínas de Neoplasias/classificação
16.
J Immunol ; 194(9): 4055-7, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25888699

RESUMO

Hiromi Kubagawa and John E. Coligan coordinated an online meeting to define an appropriate nomenclature for the cell surface glycoprotein presently designated by different names: Toso, Fas apoptosis inhibitory molecule 3 (FAIM3), and IgM FcR (FcµR). FAIM3 and Faim3 are the currently approved symbols for the human and mouse genes, respectively, in the National Center for Biotechnology Information, Ensembl, and other databases. However, recent functional results reported by several groups of investigators strongly support a recommendation for renaming FAIM3/Faim3 as FCMR/Fcmr, a name better reflecting its physiological function as the FcR for IgM. Participants included 12 investigators involved in studying Toso/FAIM3(Faim3)/FµR, representatives from the Human Genome Nomenclature Committee (Ruth Seal) and the Mouse Genome Nomenclature Committee (Monica McAndrews), and an observer from the IgM research field (Michael Carroll). In this article, we provide a brief background of the key research on the Toso/FAIM3(Faim3)/FcµR proteins, focusing on the ligand specificity and functional activity, followed by a brief summary of discussion about adopting a single name for this molecule and its gene and a resulting recommendation for genome nomenclature committees.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas de Transporte , Proteínas de Membrana , Terminologia como Assunto , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Transporte/genética , Humanos , Imunoglobulina M , Proteínas de Membrana/genética , Camundongos , Receptores Fc/classificação
17.
Nucleic Acids Res ; 43(Database issue): D1079-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25361968

RESUMO

The HUGO Gene Nomenclature Committee (HGNC) based at the European Bioinformatics Institute (EMBL-EBI) assigns unique symbols and names to human genes. To date the HGNC have assigned over 39,000 gene names and, representing an increase of over 5000 entries in the past two years. As well as increasing the size of our database, we have continued redesigning our website http://www.genenames.org and have modified, updated and improved many aspects of the site including a faster and more powerful search, a vastly improved HCOP tool and a REST service to increase the number of ways users can retrieve our data. This article provides an overview of our current online data and resources, and highlights the changes we have made in recent years.


Assuntos
Bases de Dados Genéticas , Genes , Terminologia como Assunto , Genoma Humano , Humanos , Internet
18.
Hum Genomics ; 7: 12, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23634723

RESUMO

The HUGO Gene Nomenclature Committee has approved gene symbols for the majority of protein-coding genes on the human reference genome. To adequately represent regions of complex structural variation, the Genome Reference Consortium now includes alternative representations of some of these regions as part of the reference genome. Here, we describe examples of how we name novel genes in these regions and how this nomenclature is displayed on our website, http://genenames.org.


Assuntos
Genoma Humano/genética , Mutação/genética , Terminologia como Assunto , Haplótipos , Humanos , Padrões de Referência
19.
Nucleic Acids Res ; 41(Database issue): D751-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23125371

RESUMO

An accurate, comprehensive, non-redundant and up-to-date bibliography is a crucial component of any Model Organism Database (MOD). Principally, the bibliography provides a set of references that are specific to the field served by the MOD. Moreover, it serves as a backbone to which all curated biological data can be attributed. Here, we describe the organization and main features of the bibliography in FlyBase (flybase.org), the MOD for Drosophila melanogaster. We present an overview of the current content of the bibliography, the pipeline for identifying and adding new references, the presentation of data within Reference Reports and effective methods for searching and retrieving bibliographic data. We highlight recent improvements in these areas and describe the advantages of using the FlyBase bibliography over alternative literature resources. Although this article is focused on bibliographic data, many of the features and tools described are applicable to browsing and querying other datasets in FlyBase.


Assuntos
Bibliografias como Assunto , Bases de Dados Genéticas , Drosophila melanogaster/genética , Animais , Drosophila/genética , Internet
20.
Nucleic Acids Res ; 41(Database issue): D545-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161694

RESUMO

The HUGO Gene Nomenclature Committee situated at the European Bioinformatics Institute assigns unique symbols and names to human genes. Since 2011, the data within our database has expanded largely owing to an increase in naming pseudogenes and non-coding RNA genes, and we now have >33,500 approved symbols. Our gene families and groups have also increased to nearly 500, with ∼45% of our gene entries associated to at least one family or group. We have also redesigned the HUGO Gene Nomenclature Committee website http://www.genenames.org creating a constant look and feel across the site and improving usability and readability for our users. The site provides a public access portal to our database with no restrictions imposed on access or the use of the data. Within this article, we review our online resources and data with particular emphasis on the updates to our website.


Assuntos
Bases de Dados Genéticas , Genes , Terminologia como Assunto , Humanos , Internet , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...