Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cells ; 12(4)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831214

RESUMO

Glioblastoma's (GBM) aggressive growth is driven by redundant activation of a myriad of signaling pathways and genomic alterations in tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), which is altered in over 50% of cases. Single agents targeting EGFR have not proven effective against GBM. In this study, we aimed to identify an effective anti-tumor regimen using pharmacogenomic testing of patient-derived GBM samples, in culture and in vivo. High-throughput pharmacological screens of ten EGFR-driven GBM samples identified the combination of erlotinib (EGFRi) and MLN0128 (a mammalian target of rapamycin inhibitor, or MTORi) as the most effective at inhibiting tumor cell viability. The anti-tumor activity of erlonitib+MLN0128 was synergistic and produced inhibition of the p-EGFR, mitogen-activated protein kinase (MAPK), and Phosphoinositide 3-kinase (PI3K) pathways in culture. Using an orthotopic murine model of GBM, we show that erlotinib+MLN0128 inhibited tumor growth in vivo and significantly prolonged the survival of tumor-bearing mice. Expression profiling of tumor tissues from treated mice revealed a unique gene signature induced by erlotinib+MLN0128, consisting of downregulation of immunosuppressive chemokines in the tumor microenvironment, including C-C motif chemokine ligand 2 (CCL2) and periostin. Lower periostin levels resulted in the inhibition of Iba1+ (tumor-promoting) macrophage infiltration of GBM xenografts. Taken together, our results demonstrate that pharmacological co-targeting of EGFR and MTOR using clinically available drugs represents an effective treatment paradigm for EGFR-driven GBMs, acting both by inhibiting tumor cell growth and modulating the immune tumor microenvironment.


Assuntos
Glioblastoma , Humanos , Animais , Camundongos , Cloridrato de Erlotinib/farmacologia , Glioblastoma/metabolismo , Microambiente Tumoral , Fosfatidilinositol 3-Quinases , Proliferação de Células , Receptores ErbB/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/metabolismo
2.
Brain Sci ; 14(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38248233

RESUMO

Negative symptoms in schizophrenia impose a significant burden with limited effective pharmacological treatment options. Recent trials have shown preliminary evidence for the efficacy of using intermittent theta burst stimulation (iTBS) in treating negative symptoms in schizophrenia. We aim to systematically review the current evidence of iTBS in the treatment of the negative symptoms of schizophrenia as an augmentation therapy. The study protocol was developed and registered on Prospero (registration ID: 323381). MEDLINE, EMBASE, Web of Science (Scopus), PsycINFO and Wan Fang databases were searched for sham-controlled, randomized trials of iTBS among patients with schizophrenia. The mean difference in major outcome assessments for negative symptoms was calculated. The quality of evidence was assessed using the Cochrane Risk of Bias Tool (version 1) and the GRADE system. Moreover, 12 studies including a total of 637 participants were included. Compared to sham treatment, the pooled analysis was in favor of iTBS treatment for negative symptoms (mean weight effect size: 0.59, p = 0.03) but not for positive symptoms (mean weight effect size: 0.01, p = 0.91) and depressive symptoms (mean weight effect size: 0.35, p = 0.16). A significant treatment effect was also observed on the iTBS target site left dorsal prefrontal cortex (mean weight effect size: 0.86, p = 0.007) and for stimulation with 80% motor threshold (mean weight effect size: 0.86, p = 0.02). Thus, our synthesized data support iTBS as a potential treatment for negative symptoms among patients with schizophrenia. However, the long-term efficacy and safety issues of iTBS in a larger population have yet to be examined.

3.
Pharmaceutics ; 13(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34575438

RESUMO

Oxidative stress is a known contributor to the progression of dry eye disease pathophysiology, and previous studies have shown that antioxidant intervention is a promising therapeutic approach to reduce the disease burden and slow disease progression. In this study, we evaluated the pharmacological efficacy of the naturally occurring prenylated chalconoid, xanthohumol, in preclinical models for dry eye disease. Xanthohumol acts by promoting the transcription of phase II antioxidant enzymes. In this study, xanthohumol prevented tert-butyl hydroperoxide-induced loss of cell viability in human corneal epithelial (HCE-T) cells in a dose-dependent manner and resulted in a significant increase in expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of phase II endogenous antioxidant enzymes. Xanthohumol-encapsulating poly(lactic-co-glycolic acid) nanoparticles (PLGA NP) were cytoprotective against oxidative stress in vitro, and significantly reduced ocular surface damage and oxidative stress-associated DNA damage in corneal epithelial cells in the mouse desiccating stress/scopolamine model for dry eye disease in vivo. PLGA NP represent a safe and efficacious drug delivery vehicle for hydrophobic small molecules to the ocular surface. Optimization of NP-based antioxidant formulations with the goal to minimize instillation frequency may represent future therapeutic options for dry eye disease and related ocular surface disease.

4.
Cutis ; 107(6): E22-E28, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34314327

RESUMO

It has been suggested that the use of etanercept for treatment of Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) might provide improved mortality benefit and decreased skin healing times. This retrospective study compared the use of single-dose subcutaneous etanercept to intravenous immunoglobulin (IVIG) and supportive care alone. Thirteen patients were treated with a single dose (50 mg) of subcutaneous etanercept. Results of this study support the use of etanercept as a potentially beneficial agent in the treatment of SJS/TEN.


Assuntos
Síndrome de Stevens-Johnson , Etanercepte , Humanos , Imunoglobulinas Intravenosas , Estudos Retrospectivos , Síndrome de Stevens-Johnson/tratamento farmacológico
5.
Phys Rev Lett ; 124(11): 119901, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242695

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.122.208002.

6.
ACS Nano ; 13(9): 10301-10311, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31487458

RESUMO

B-cell lymphoma cells depend upon cholesterol to maintain pro-proliferation and pro-survival signaling via the B-cell receptor. Targeted cholesterol depletion of lymphoma cells is an attractive therapeutic strategy. We report here high-density lipoprotein mimicking magnetic nanostructures (HDL-MNSs) that can bind to the high-affinity HDL receptor, scavenger receptor type B1 (SR-B1), and interfere with cholesterol flux mechanisms in SR-B1 receptor positive lymphoma cells, causing cellular cholesterol depletion. In addition, the MNS core can be utilized for its ability to generate heat under an external radio frequency field. The thermal activation of MNS can lead to both innate and adaptive antitumor immune responses by inducing the expression of heat shock proteins that lead to activation of antigen presenting cells and finally lymphocyte trafficking. In the present study, we demonstrate SR-B1 receptor mediated binding and cellular uptake of HDL-MNS and prevention of phagolysosome formation by transmission electron microscopy, fluorescence microscopy, and ICP-MS analysis. The combinational therapeutics of cholesterol depletion and thermal activation significantly improves therapeutic efficacy in SR-B1 expressing lymphoma cells. HDL-MNS reduces the T2 relaxation time under magnetic resonance imaging (MRI) more effectively compared with a commercially available contrast agent, and the specificity of HDL-MNS toward the SR-B1 receptor leads to differential contrast between SR-B1 positive and negative cells suggesting its utility in diagnostic imaging. Overall, we have demonstrated that HDL-MNSs have cell specific targeting efficiency, can modulate cholesterol efflux, can induce thermal activation mediated antitumor immune response, and possess high contrast under MRI, making it a promising theranostic platform in lymphoma.


Assuntos
Biomimética , Metabolismo dos Lipídeos , Linfoma de Células B/imunologia , Fenômenos Magnéticos , Nanoestruturas/química , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Endocitose , Imunomodulação , Ferro/metabolismo , Lipoproteínas HDL/química , Camundongos , Microscopia de Fluorescência , Nanoestruturas/ultraestrutura , Receptores Depuradores Classe B/metabolismo , Temperatura
7.
Phys Rev Lett ; 122(20): 208002, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172744

RESUMO

We develop a double mean-field theory for charged macrogels immersed in electrolyte solutions in the spirit of the cell model approach. We first demonstrate that the equilibrium sampling of a single explicit coarse-grained charged polymer in a cell yields accurate predictions of the swelling equilibrium if the geometry is suitably chosen and all pressure contributions have been incorporated accurately. We then replace the explicit flexible chain by a suitably modeled penetrable charged rod that allows us to compute all pressure terms within the Poisson-Boltzmann approximation. This model, albeit computationally cheap, yields excellent predictions of swelling equilibria under varying chain length, polymer charge fraction, and external reservoir salt concentrations when compared to coarse-grained molecular dynamics simulations of charged macrogels. We present an extension of the model to the experimentally relevant cases of pH-sensitive gels.

8.
Soft Matter ; 15(6): 1155-1185, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30706070

RESUMO

This article recapitulates the state of the art regarding simulations of ionization equilibria of weak polyelectrolyte solutions and gels. We start out by reviewing the essential thermodynamics of ionization and show how the weak polyelectrolyte ionization differs from the ionization of simple weak acids and bases. Next, we describe simulation methods for ionization reactions, focusing on two methods: the constant-pH ensemble and the reaction ensemble. After discussing the advantages and limitations of both methods, we review the existing simulation literature. We discuss coarse-grained simulations of weak polyelectrolytes with respect to ionization equilibria, conformational properties, and the effects of salt, both in good and poor solvent conditions. This is followed by a discussion of branched star-like weak polyelectrolytes and weak polyelectrolyte gels. At the end we touch upon the interactions of weak polyelectrolytes with other polymers, surfaces, nanoparticles and proteins. Although proteins are an important class of weak polyelectrolytes, we explicitly exclude simulations of protein ionization equilibria, unless they involve protein-polyelectrolyte interactions. Finally, we try to identify gaps and open problems in the existing simulation literature, and propose challenges for future development.

9.
Electrophoresis ; 40(5): 799-809, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30645004

RESUMO

The ionization of dissociable groups in weak polyelectrolytes does not occur in a homogenous fashion. Monomer connectivity imposes constraints on the localization of the dissociated (charged) monomers that affect the local electric potential. As a result, the mean bare charge along a weak polyelectrolyte can vary depending on the proximity to topological features (e.g. presence of crosslinks or dangling ends). Using reaction-ensemble Monte-Carlo simulations we calculate the dissociation inhomogeneities for a few selected PE configurations, linear, rod-like, flexible four-arm star, and a star with stiff arms. An ensemble preaverage is used to obtain the annealed bare charge profile for these different polymer configurations. Using molecular dynamics simulations within a Lattice-Boltzman fluid, we investigate how the electrophoretic mobility is affected by the bare charge inhomogeneities arising from the annealed weak polyelectrolytes. Surprisingly, the mobility obtained for the situations corresponding to the predicted charge profile for annealed weak polyelectrolytes are not significantly different than the mobility obtained when all the monomers have an identical charge (under the constraint that the total polyelectrolyte bare charge is the same). This is also true for the stiff rod-like variants where conformational changes induced from the localization of the monomer charges are negligible. In salty solutions, we find that counterions are affected by the electric potential modulations induced by the topological features. Since the counterions crowd in regions where the electric potential caused by the dissociated monomers is highest, they wash-out the bare charge inhomogeneities and contribute to a more uniform effective backbone charge.


Assuntos
Eletroforese , Modelos Químicos , Polieletrólitos/química , Simulação de Dinâmica Molecular , Método de Monte Carlo
10.
Phys Rev E ; 98(2-1): 022501, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253469

RESUMO

Langevin dynamics simulations of polymer translocation are performed where the polymer is stretched via two opposing forces applied on the first and last monomer before and during translocation. In this setup, polymer translocation is achieved by imposing a bias between the two pulling forces such that there is net displacement towards the trans side. Under the influence of stretching forces, the elongated polymer ensemble contains less variations in conformations compared to an unstretched ensemble. Simulations demonstrate that this reduced spread in initial conformations yields a reduced variation in translocation times relative to the mean translocation time. This effect is explored for different ratios of the amplitude of thermal fluctuations to driving forces to control for the relative influence of the thermal path sampled by the polymer. Since the variance in translocation times is due to contributions coming from sampling both thermal noise and initial conformations, our simulations offer independent control over the two main sources of noise and allow us to shed light on how they both contribute to translocation dynamics. Simulation parameter space corresponding to experimentally relevant conditions is highlighted and shown to correspond to a significant decrease in the spread of translocation times, thus indicating that stretching DNA prior to translocation could assist nanopore-based sequencing and sizing applications.

11.
Artigo em Inglês | MEDLINE | ID: mdl-29439556

RESUMO

OBJECTIVES: we used a quantitative method to systematically synthesize the emerging literature and critically evaluate the effects of Baduanjin on depression and anxiety in people with physical or mental illnesses. Additionally, we determined if the number of total Baduanjin training sessions is associated with decreased anxiety and depression levels. METHODS: both English and Chinese databases were searched for potential studies published between January 1982 and October 2017. The eligible randomized controlled trials were considered for meta-analysis. Effect size (Hedge's g) was computed for the pooled effects while the random-effect model was set. For moderator analysis; Subgroup meta-analysis for categorical variables and meta-regression for continuous variables were performed. RESULTS: the aggregated result has shown a significant benefit in favour of Baduanjin on anxiety (Hedge's g = -0.99; CI -1.63 to -0.74) and depression (Hedge's g = -1.07; CI -1.3 to -0.83). For continuous potential moderators; meta-regression indicated a significant effect for total hours in Baduanjin practice (ß = -0.0053; 95% CI -0.009 to -0.0014; p = 0.008). With regard to depression; meta-regression indicated a significant effect for total sessions of Baduanjin practice (ß = -0.0023; 95% CI -0.006 to -0.0004; p = 0.028). CONCLUSIONS: the encouraging findings indicate the efficacy of Baduanjin exercise in reducing depression and anxiety symptoms in people with physical or mental illnesses. However; the results should be interpreted with caution because of existing methodological limitations (e.g., high risk of bias; Baduanjin combined with other behavioral interventions; and heterogeneity of control groups).


Assuntos
Ansiedade/terapia , Depressão/terapia , Nível de Saúde , Atenção Plena/métodos , Humanos , Transtornos Mentais/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Artigo em Inglês | MEDLINE | ID: mdl-29370149

RESUMO

OBJECTIVE: we performed the first systematic review with meta-analyses of the existing studies that examined mindfulness-based Baduanjin exercise for its therapeutic effects for individuals with musculoskeletal pain or insomnia. METHODS: Both English- (PubMed, Web of Science, Elsevier, and Google Scholar) and Chinese-language (CNKI and Wangfang) electronic databases were used to search relevant articles. We used a modified PEDro scale to evaluate risk of bias across studies selected. All eligible RCTS were considered for meta-analysis. The standardized mean difference was calculated for the pooled effects to determine the magnitude of the Baduanjin intervention effect. For the moderator analysis, we performed subgroup meta-analysis for categorical variables and meta-regression for continuous variables. RESULTS: The aggregated result has shown a significant benefit in favour of Baduanjin at alleviating musculoskeletal pain (SMD = -0.88, 95% CI -1.02 to -0.74, p < 0.001, I² = 10.29%) and improving overall sleep quality (SMD = -0.48, 95% CI -0.95 to -0.01, p = 004, I² = 84.42%). CONCLUSIONS: Mindfulness-based Baduanjin exercise may be effective for alleviating musculoskeletal pain and improving overall sleep quality in people with chronic illness. Large, well-designed RCTs are needed to confirm these findings.


Assuntos
Doença Crônica/terapia , Dor Musculoesquelética/terapia , Qigong/estatística & dados numéricos , Distúrbios do Início e da Manutenção do Sono/terapia , Exercício Físico , Humanos , Atenção Plena , Sono
13.
Nanoscale ; 10(11): 5078-5088, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29255814

RESUMO

Polymeric bicontinuous nanospheres (BCNs) that are analogous to lipid cubosomes possess high internal surface area and porosity that can accommodate the loading of a wide range of hydrophobic and hydrophilic molecules for diverse applications. Self-assembly of BCNs has been reported using complex amphiphilic polymeric structures, with co-solvent dispersion being the only documented method of formation. Here, we report a simple amphiphilic diblock copolymer, poly(ethylene glycol)17-block-poly(propylene sulfide)75 (PEG17-bl-PPS75), to form BCNs using the rapid and scalable technique of flash nanoprecipitation (FNP). Dynamic light scattering (DLS) and cryogenic transmission electron microscopy (cryoTEM) verified low polydispersity and the formation of bicontinuous structures with internal aqueous channels, respectively. Small-angle X-ray scattering (SAXS) confirmed a primitive cubic (Im3m) internal organization for BCNs assembled by FNP. Both hydrophobic and hydrophilic molecules were effectively loaded into BCNs via FNP, and encapsulated payloads were found to release in controlled manner in aqueous solutions. Due to the oxidation-sensitivity of PPS, biologically relevant concentrations of reactive oxygen species could trigger payload release on demand. BCNs were found to be non-toxic and endocytosed by phagocytic cells. Furthermore, an in vitro functional assay showed BCNs co-loaded with antigen ovalbumin and adjuvant monophosphoryl lipid A (MPL) to promote peptide/MHCI surface presentation by dendritic cells, a critical step for vaccine formulations during immunization. In conclusion, FNP supports the facile and scalable assembly and loading of PEG-bl-PPS BCNs, making them an attractive nanoscale delivery vehicle for both hydrophilic and hydrophobic molecules.

14.
Sci Rep ; 7(1): 5655, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720883

RESUMO

In this study, we investigated some mechanisms involved in sodium-dependent hypertension of rats exposed to chronic salt (NaCl) intake from weaning until adult age. Weaned male Wistar rats were placed under high (0.90% w/w, HS) or regular (0.27% w/w, Cont) sodium diets for 12 weeks. Water consumption, urine output and sodium excretion were higher in HS rats compared to control. Blood pressure (BP) was directly measured by the arterial catheter and found 13.8% higher in HS vs Cont rats. Ganglionic blockade with hexamethonium caused greater fall in the BP of HS rats (33%), and central antagonism of AT1 receptors (losartan) microinjected into the lateral ventricle reduced BP level of HS, but not of Cont group. Heart rate variability analysis revealed sympathetic prevalence on modulation of the systolic interval. HS diet did not affect creatinine clearance. Kidney histological analysis revealed no significant change in renal corpuscle structure. Sodium and potassium concentrations in CSF were found higher in HS rats despite no change in plasma concentration of these ions. Taken together, data suggest that animals exposed to chronic salt intake to a level close to that reported for human' diet since weaning lead to hypertension, which appears to rely on sodium-driven neurogenic mechanisms.


Assuntos
Anti-Hipertensivos/administração & dosagem , Hipertensão/induzido quimicamente , Potássio/líquido cefalorraquidiano , Cloreto de Sódio na Dieta/administração & dosagem , Sódio/líquido cefalorraquidiano , Animais , Anti-Hipertensivos/uso terapêutico , Determinação da Pressão Arterial , Frequência Cardíaca , Hexametônio/administração & dosagem , Hexametônio/uso terapêutico , Hipertensão/líquido cefalorraquidiano , Hipertensão/tratamento farmacológico , Losartan/administração & dosagem , Losartan/uso terapêutico , Masculino , Ratos , Ratos Wistar , Sódio/urina , Cloreto de Sódio na Dieta/efeitos adversos , Desmame
15.
J Chem Phys ; 146(5): 054903, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178822

RESUMO

We present a computer simulation study of polymer translocation in a situation where the chain is initially confined to a closed cylindrical cavity in order to reduce the impact of conformational diversity on the translocation times. In particular, we investigate how the coefficient of variation of the distribution of translocation times can be minimized by optimizing both the volume and the aspect ratio of the cavity. Interestingly, this type of confinement sometimes increases the number and impact of hairpin conformations such that the fluctuations in the translocation process do not follow a power law in time (for instance, these fluctuations can even vary non-monotonically with time). We develop a tension-propagation model for a polymer compressed into such a confining volume and find that its predictions are in good agreement with our simulation results in the experimentally relevant strongly driven limit. Both the theoretical calculations and the simulation data yield a minimum in the coefficient of variation of the distribution of translocation times for a cylindrical cavity with an aspect ratio that makes it similar to a hemisphere. This provides guidance for the design of new devices based on the preconfinement of the target polymer into cavities.

16.
Electrophoresis ; 38(5): 653-658, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28059440

RESUMO

We investigate the dynamics of driving a polyelectrolyte such as DNA through a nanopore and into a cross-linked gel. Placing the gel on the trans-side of the nanopore can increase the translocation time while not negatively affecting the capture rates. Thus, this setup combines the mechanics of gel electrophoresis with nanopore translocation. However, contrary to typical gel electrophoresis scenarios, the effect of the field is localized in the immediate vicinity of the nanopore and becomes negligible inside the gel matrix. Thus, we investigate the process by which a semiflexible polymer can be pushed into a gel matrix via a localized field and we describe how the dynamics of gel penetration depends upon the field intensity, polymer stiffness, and gel pore size. Our simulation results show that a semiflexible polymer enters the gel region with two distinct mechanisms depending upon the ratio between the bending length scale and the gel pore size. In both regimes, the gel fibers cause a net increase in the mean translocation time. Interestingly, the translocation rate is found to be constant (a potentially useful feature for many applications) during the predominant part of the translocation process when the polymer is stiff over a length scale comparable to the gel pore size.


Assuntos
DNA/análise , DNA/química , Simulação de Dinâmica Molecular , Nanoporos , DNA/metabolismo , Tamanho da Partícula , Polímeros/análise , Polímeros/química , Polímeros/metabolismo , Análise de Sequência de DNA
17.
Gels ; 4(1)2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30674778

RESUMO

We investigate the chemical equilibria of weak polyelectrolyte nanogels with reaction ensemble Monte Carlo simulations. With this method, the chemical identity of the nanogel monomers can change between neutral or charged following the acid-base equilibrium reaction HA ⇌ A- + H⁺. We investigate the effect of changing the chemical equilibria by modifying the dissociation constant K a . These simulations allow for the extraction of static properties like swelling equilibria and the way in which charge-both monomer and ionic-is distributed inside the nanogel. Our findings reveal that, depending on the value of K a , added salt can either increase or decrease the gel size. Using the calculated mean-charge configurations of the nanogel from the reaction ensemble simulation as a quenched input to coupled lattice-Boltzmann molecular dynamics simulations, we investigate dynamical nanogel properties such as the electrophoretic mobility µ and the diffusion coefficient D.

18.
Abdom Radiol (NY) ; 42(3): 908-917, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27743018

RESUMO

AIM: Renal cell carcinoma (RCC) is a heterogeneous disease which encompasses various subtypes that exhibit differing biologic behavior and imaging findings. Non-invasive subtype differentiation by imaging facilitates prognostication and treatment selection. The aim of the study was to evaluate the performance of a diagnostic imaging key based on tumor morphology, T2 signal intensity on MRI, and tumor vascularity for differentiating RCC into its subtypes. MATERIALS AND METHODS: Using a custom-designed diagnostic imaging key, three blinded fellowship-trained abdominal radiologists independently evaluated the cross-sectional imaging of 50 histologically proven RCCs and categorized these into subtypes in two sessions. The diagnostic performance of the imaging key was evaluated and compared to the baseline performance without the key. RESULTS: The 50 RCCs comprised 20 (40%) clear cell, 17 (34%) papillary, and 13 (26%) chromophobe tumors. All expert readers demonstrated an improvement in diagnostic accuracy by an average of 5.3% with the use of the key. The readers showed good to excellent diagnostic performance for clear cell RCC (area under the receiver operating curve, AUROC of 0.86-0.91) and papillary RCC (AUROC of 0.82-0.87), and fair performance with chromophobe RCC (AUROC of 0.67-0.77). The Reader-to-SOR (standard of reference) agreement increased from 0.53 (moderate) to 0.67 (good) with the use of the key. CONCLUSION: The diagnostic imaging key facilitates RCC subtype characterization and can be used as a decision support tool.


Assuntos
Carcinoma Papilar/diagnóstico por imagem , Carcinoma Papilar/patologia , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Meios de Contraste , Diagnóstico Diferencial , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Iohexol , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Compostos Organometálicos , Estudos Retrospectivos
19.
ACS Nano ; 10(12): 11290-11303, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27935698

RESUMO

Atherosclerosis, a leading cause of heart disease, results from chronic vascular inflammation that is driven by diverse immune cell populations. Nanomaterials may function as powerful platforms for diagnostic imaging and controlled delivery of therapeutics to inflammatory cells in atherosclerosis, but efficacy is limited by nonspecific uptake by cells of the mononuclear phagocytes system (MPS). MPS cells located in the liver, spleen, blood, lymph nodes, and kidney remove from circulation the vast majority of intravenously administered nanomaterials regardless of surface functionalization or conjugation of targeting ligands. Here, we report that nanostructure morphology alone can be engineered for selective uptake by dendritic cells (DCs), which are critical mediators of atherosclerotic inflammation. Employing near-infrared fluorescence imaging and flow cytometry as a multimodal approach, we compared organ and cellular level biodistributions of micelles, vesicles (i.e., polymersomes), and filomicelles, all assembled from poly(ethylene glycol)-bl-poly(propylene sulfide) (PEG-bl-PPS) block copolymers with identical surface chemistries. While micelles and filomicelles were respectively found to associate with liver macrophages and blood-resident phagocytes, polymersomes were exceptionally efficient at targeting splenic DCs (up to 85% of plasmacytoid DCs) and demonstrated significantly lower uptake by other cells of the MPS. In a mouse model of atherosclerosis, polymersomes demonstrated superior specificity for DCs (p < 0.005) in atherosclerotic lesions. Furthermore, significant differences in polymersome cellular biodistributions were observed in atherosclerotic compared to naïve mice, including impaired targeting of phagocytes in lymph nodes. These results present avenues for immunotherapies in cardiovascular disease and demonstrate that nanostructure morphology can be tailored to enhance targeting specificity.


Assuntos
Aterosclerose/terapia , Células Dendríticas , Nanoestruturas , Animais , Inflamação , Ligantes , Camundongos , Micelas , Polímeros
20.
J R Soc Interface ; 13(123)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27798278

RESUMO

During embryogenesis, the spherical inner cell mass (ICM) proliferates in the confined environment of a blastocyst. Embryonic stem cells (ESCs) are derived from the ICM, and mimicking embryogenesis in vitro, mouse ESCs (mESCs) are often cultured in hanging droplets. This promotes the formation of a spheroid as the cells sediment and aggregate owing to increased physical confinement and cell-cell interactions. In contrast, mESCs form two-dimensional monolayers on flat substrates and it remains unclear if the difference in organization is owing to a lack of physical confinement or increased cell-substrate versus cell-cell interactions. Employing microfabricated substrates, we demonstrate that a single geometric degree of physical confinement on a surface can also initiate spherogenesis. Experiment and computation reveal that a balance between cell-cell and cell-substrate interactions finely controls the morphology and organization of mESC aggregates. Physical confinement is thus an important regulatory cue in the three-dimensional organization and morphogenesis of developing cells.


Assuntos
Simulação por Computador , Modelos Biológicos , Células-Tronco Embrionárias Murinas/metabolismo , Transdução de Sinais , Esferoides Celulares/metabolismo , Animais , Agregação Celular , Linhagem Celular , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Esferoides Celulares/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...