Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neural Circuits ; 17: 1307283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107610

RESUMO

Auditory brainstem neurons in the lateral superior olive (LSO) receive excitatory input from the ipsilateral cochlear nucleus (CN) and inhibitory transmission from the contralateral CN via the medial nucleus of the trapezoid body (MNTB). This circuit enables sound localization using interaural level differences. Early studies have observed an additional inhibitory input originating from the ipsilateral side. However, many of its details, such as its origin, remained elusive. Employing electrical and optical stimulation of afferents in acute mouse brainstem slices and anatomical tracing, we here describe a glycinergic projection to LSO principal neurons that originates from the ipsilateral CN. This inhibitory synaptic input likely mediates inhibitory sidebands of LSO neurons in response to acoustic stimulation.


Assuntos
Núcleo Coclear , Localização de Som , Complexo Olivar Superior , Animais , Camundongos , Complexo Olivar Superior/fisiologia , Núcleo Coclear/fisiologia , Núcleo Olivar/fisiologia , Localização de Som/fisiologia , Neurônios/fisiologia , Vias Auditivas/fisiologia
2.
Cell Rep ; 42(2): 112063, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753414

RESUMO

Extracellular vesicles (EVs) have emerged as mediators of cellular communication, in part via the delivery of associated microRNAs (miRNAs), small non-coding RNAs that regulate gene expression. We show that brain-derived neurotrophic factor (BDNF) mediates the sorting of miR-132-5p, miR-218-5p, and miR-690 in neuron-derived EVs. BDNF-induced EVs in turn increase excitatory synapse formation in recipient hippocampal neurons, which is dependent on the inter-neuronal delivery of these miRNAs. Transcriptomic analysis further indicates the differential expression of developmental and synaptogenesis-related genes by BDNF-induced EVs, many of which are predicted targets of miR-132-5p, miR-218-5p, and miR-690. Furthermore, BDNF-induced EVs up-regulate synaptic vesicle (SV) clustering in a transmissible manner, thereby increasing synaptic transmission and synchronous neuronal activity. As BDNF and EV-miRNAs miR-218 and miR-132 were previously implicated in neuropsychiatric disorders such as anxiety and depression, our results contribute to a better understanding of disorders characterized by aberrant neural circuit connectivity.


Assuntos
Vesículas Extracelulares , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios/metabolismo , Vesículas Extracelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...