Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(2): e0223921, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35377189

RESUMO

During stationary phase in Escherichia coli, the expression of the ribosome modulation factor (RMF) protein participates in the dimerization of two 70S ribosomes, ultimately creating a 100S particle. 100S ribosomes are commonly thought to function to preserve ribosomes as growth ceases and cells begin to catabolize intracellular components, including proteins, during their transition into stationary phase. Here, we show that the rates of stationary-phase ribosomal degradation are increased in an rmf mutant strain that cannot produce 100S ribosomes, resulting in deficiencies in outgrowth upon reinoculation into fresh medium. Upon coinoculation in LB medium, the mutant exhibits a delay in entry into log phase, differences in growth rates, and an overall reduction in relative fitness during competition. Unexpectedly, the rmf mutant exhibited shorter generation times than wild-type cells during log phase, both in monoculture and during competition. These doubling times of ∼13 min suggest that failure to maintain ribosomal balance affects the control of cell division. Though the timing of entry into and exit from log phase is altered, 100S ribosomes are not essential for long-term viability of the rmf mutant when grown in monoculture. IMPORTANCE Ribosomes are the sole source in any cell for new protein synthesis that is vital to maintain life. While ribosomes are frequently consumed as sources of nutrients under low-nutrient conditions, some ribosomes appear to be preserved for later use. The failure to maintain the availability of these ribosomes can lead to a dire consequence upon the influx of new nutrients, as cells are unable to efficiently replenish their metabolic machinery. It is important to study the repercussions, consequences, and mechanisms of survival in cells that cannot properly maintain the availability of their ribosomes in order to better understand their mechanisms of survival during competition under nutrient-depleted conditions.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Ribossomos/metabolismo
3.
Aging Cell ; 16(2): 320-328, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28000382

RESUMO

Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals.


Assuntos
Envelhecimento/fisiologia , Quebras de DNA de Cadeia Dupla , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Células Germinativas/metabolismo , Recombinação Homóloga/genética , Animais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/efeitos da radiação , Células Germinativas/citologia , Células Germinativas/efeitos da radiação , Meiose/efeitos da radiação , Modelos Biológicos , Rad51 Recombinase/metabolismo , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...