Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 171(9): 4528-38, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14568926

RESUMO

To better characterize the cellular source of lymphotactin (XCL1), we compared XCL1 expression in different lymphocyte subsets by real-time PCR. XCL1 was constitutively expressed in both PBMC and CD4(+) cells, but its expression was almost 2 log higher in CD8(+) cells. In vitro activation was associated with a substantial increase in XCL1 expression in both PBMC and CD8(+) cells, but not in CD4(+) lymphocytes. The preferential expression of XCL1 in CD8(+) cells was confirmed by measuring XCL1 production in culture supernatants, and a good correlation was found between figures obtained by real-time PCR and XCL1 contents. XCL1 expression was mostly confined to a CD3(+)CD8(+) subset not expressing CD5, where XCL1 expression equaled that shown by gammadelta(+) T cells. Compared with the CD5(+) counterpart, CD3(+)CD8(+)CD5(-) cells, which did not express CD5 following in vitro activation, showed preferential expression of the alphaalpha form of CD8 and a lower expression of molecules associated with a noncommitted/naive phenotype, such as CD62L. CD3(+)CD8(+)CD5(-) cells also expressed higher levels of the XCL1 receptor; in addition, although not differing from CD3(+)CD8(+)CD5(+) cells in terms of the expression of most alpha- and beta-chemokines, they showed higher expression of CCL3/macrophage inflammatory protein-1alpha. These data show that TCR alphabeta-expressing lymphocytes that lack CD5 expression are a major XCL1 source, and that the contribution to its synthesis by different TCR alphabeta-expressing T cell subsets, namely CD4(+) lymphocytes, is negligible. In addition, they point to the CD3(+)CD8(+)CD5(-) population as a particular T cell subset within the CD8(+) compartment, whose functional properties deserve further attention.


Assuntos
Antígenos CD5 , Antígenos CD8/biossíntese , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocinas C/biossíntese , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Linfocinas/biossíntese , Sialoglicoproteínas/biossíntese , Adulto , Complexo CD3/biossíntese , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD5/metabolismo , Células Cultivadas , Quimiocina CXCL1 , Quimiocinas C/sangue , Quimiocinas CC/biossíntese , Quimiocinas CXC/biossíntese , Criança , Pré-Escolar , Humanos , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular , Cinética , Linfocinas/sangue , Pessoa de Meia-Idade , Sialoglicoproteínas/sangue , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
J Physiol ; 553(Pt 2): 407-14, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14500777

RESUMO

The synaptic release of glutamate evokes in astrocytes periodic increases in [Ca2+]i, due to the activation of metabotropic glutamate receptors (mGluRs). The frequency of these [Ca2+]i oscillations is controlled by the level of neuronal activity, indicating that they represent a specific, frequency-coded signalling system of neuron-to-astrocyte communication. We recently found that neuronal activity-dependent [Ca2+]i oscillations in astrocytes are the main signal that regulates the coupling between neuronal activity and blood flow, the so-called functional hyperaemia. Prostaglandins play a major role in this fundamental phenomenon in brain function, but little is known about a possible link between [Ca2+]i oscillations and prostaglandin release from astrocytes. To investigate whether [Ca2+]i oscillations regulate the release of vasoactive prostaglandins, such as the potent vasodilator prostaglandin E2 (PGE2), from astrocytes, we plated wild-type human embryonic kidney (HEK)293 cells, which respond constitutively to PGE2 with [Ca2+]i elevations, onto cultured astrocytes, and used them as biosensors of prostaglandin release. After loading the astrocyte-HEK cell co-cultures with the calcium indicator Indo-1, confocal microscopy revealed that mGluR-mediated [Ca2+]i oscillations triggered spatially and temporally coordinated [Ca2+]i increases in the sensor cells. This response was absent in a clone of HEK cells that are unresponsive to PGE2, and recovered after transfection with the InsP3-linked prostanoid receptor EP1. We conclude that [Ca2+]i oscillations in astrocytes regulate prostaglandin releases that retain the oscillatory behaviour of the [Ca2+]i changes. This finely tuned release of PGE2 from astrocytes provides a coherent mechanistic background for the role of these glial cells in functional hyperaemia.


Assuntos
Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , Ácido Glutâmico/fisiologia , Prostaglandinas/fisiologia , Valina/análogos & derivados , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Cicloleucina/análogos & derivados , Cicloleucina/farmacologia , Citosol/metabolismo , Ácido Dibenzo(b,f)(1,4)oxazepina-10(11H)-carboxílico, 8-cloro-, 2-acetilidrazida/farmacologia , Dinoprostona/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Proteínas de Fluorescência Verde , Humanos , Indometacina/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Prostaglandinas/metabolismo , Ácido Quisquálico/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/fisiologia , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E/fisiologia , Receptores de Prostaglandina E Subtipo EP1 , Transfecção , Valina/farmacologia , Xantonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...