Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Electromyogr Kinesiol ; 42: 24-35, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29936314

RESUMO

The objective of this study was to construct peristimulus time histogram (PSTH) and peristimulus frequencygram (PSF) using single motor unit recordings to further characterize the previously documented immediate sensorimotor effects of spinal manipulation. Single pulse transcranial magnetic stimulation (TMS) via a double cone coil over the tibialis anterior (TA) motor area during weak isometric dorsiflexion of the foot was used on two different days in random order; pre/post spinal manipulation (in eighteen subjects) and pre/post a control (in twelve subjects) condition. TA electromyography (EMG) was recorded with surface and intramuscular fine wire electrodes. Three subjects also received sham double cone coil TMS pre and post a spinal manipulation intervention. From the averaged surface EMG data cortical silent periods (CSP) were constructed and analysed. Twenty-one single motor units were identified for the spinal manipulation intervention and twelve single motor units were identified for the control intervention. Following spinal manipulations there was a shortening of the silent period and an increase in the single unit I-wave amplitude. No changes were observed following the control condition. The results provide evidence that spinal manipulation reduces the TMS-induced cortical silent period and increases low threshold motoneurone excitability in the lower limb muscle. These finding may have important clinical implications as they provide support that spinal manipulation can be used to strengthen muscles. This could be followed up on populations that have reduced muscle strength, such as stroke victims.


Assuntos
Potencial Evocado Motor , Manipulação Quiroprática , Manipulação da Coluna , Contração Muscular , Adulto , Feminino , Humanos , Masculino , Córtex Motor/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana
2.
J Neurophysiol ; 118(2): 1082-1091, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539391

RESUMO

We examined the reflex response of the human masseter muscle to electrical stimulation of the lip using both single motor unit and surface electromyogram based methods. Using the classical analysis methods, reflex response to mild electrical stimuli generated two distinct short-lasting inhibitions. This pattern may reflect the development of combinations of short- and long-latency inhibitory postsynaptic potentials as a result of the mildly painful electrical lip stimulation. However, this pattern appearing in the classical analysis methods may have developed as a consequence of earlier responses and may not be genuine. This study examined the genuineness of these responses using both the classical analysis methods and the discharge rate method to uncover the realistic postsynaptic potentials in human trigeminal motor nucleus. Using the discharge rate method, we found that the electrical lip stimulation only generated a long-lasting single or compound inhibitory response that is followed by late, long-lasting excitation. These findings have important implications on the redrawing of the neuronal pathways of the trigeminal nerve that are frequently used to judge neuromuscular disorders of the trigeminal region.NEW & NOTEWORTHY We examined the human masseter reflex response to electrical stimulation of lower lip to uncover realistic postsynaptic potentials in the trigeminal motor nucleus. We found that the stimulation generates a long-lasting single or compound inhibitory response that is followed by a late, long-lasting excitation. These findings have important implications on the redrawing of the neuronal pathways of the trigeminal nerve that are frequently used to judge neuromuscular disorders of the trigeminal region.


Assuntos
Lábio/fisiologia , Músculo Masseter/fisiologia , Neurônios Motores/fisiologia , Reflexo , Núcleo Motor do Nervo Trigêmeo/fisiologia , Adulto , Estimulação Elétrica , Eletromiografia , Humanos , Lábio/inervação , Adulto Jovem
3.
Somatosens Mot Res ; 34(1): 47-51, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28152665

RESUMO

PURPOSE: To determine vibration parameters affecting the amplitude of the reflex activity of soleus muscle during low-amplitude whole-body vibration (WBV). MATERIALS AND METHODS: This study was conducted on 19 participants. Vibration frequencies of 25, 30, 35, 40, 45, and 50 Hz were used. Surface electromyography, collision force between vibration platform and participant's heel measured using a force sensor, and acceleration measured using an accelerometer fixed to the vibration platform were simultaneously recorded. RESULTS: The collision force was the main independent predictor of electromyographic amplitude. CONCLUSION: The essential parameter of vibration affecting the amplitude of the reflex muscle activity is the collision force.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Reflexo/fisiologia , Vibração , Adulto , Eletromiografia , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
J Electromyogr Kinesiol ; 31: 104-110, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27770686

RESUMO

Painful stimulation of the hand results in an inhibitory response in the hand muscles known as the cutaneous silent period (CSP). In this study, we employed probability- and frequency-based analysis methods to examine the CSP induced by laser stimuli. Subjects were asked to contract their first dorsal interosseous muscle so that selected motor units discharged at a rate of about 8Hz. Laser pulses were delivered to the palm of the hand, and reflex responses were recorded. The stimuli generated CSP in all test subjects. We found that the latency of the CSP evoked using laser stimulation was longer than that the previously published latency values of the CSP evoked using electrical stimulation. Using only the presently generated laser induced CSP data, the CSP duration was longer when analyzed via peristimulus frequencygram method compared to the probability-based methods such as peristimulus time histogram and surface electromyogram. In the light of the current results, we suggest that laser stimulation could be used when studying pain pathways in human subjects and the frequency-based analysis methods can be preferred because they are previously shown to be more reliable for obtaining the synaptic activity profile. These results can be used to standardize the CSP methods in basic and clinical research.


Assuntos
Potencial Evocado Motor , Mãos/fisiologia , Músculo Esquelético/fisiologia , Inibição Neural , Nociceptividade , Tempo de Reação , Adulto , Estimulação Elétrica , Eletromiografia , Feminino , Mãos/inervação , Humanos , Masculino , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Reflexo
5.
J Electromyogr Kinesiol ; 30: 191-5, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27485766

RESUMO

In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515µV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies.


Assuntos
Tendão do Calcâneo/fisiologia , Músculo Esquelético/fisiologia , Reflexo de Estiramento , Vibração , Adulto , Eletromiografia , Humanos , Joelho/fisiologia , Masculino , Tempo de Reação
6.
J Phys Ther Sci ; 27(7): 2279-84, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26310784

RESUMO

[Purpose] Whole-body vibration (WBV) can induce reflex responses in muscles. A number of studies have reported that the physiological mechanisms underlying this type of reflex activity can be explained by reference to a stretch-induced reflex. Thus, the primary objective of this study was to test whether the WBV-induced muscular reflex (WBV-IMR) can be explained as a stretch-induced reflex. [Subjects and Methods] The present study assessed 20 healthy males using surface electrodes placed on their right soleus muscle. The latency of the tendon reflex (T-reflex) as a stretch-induced reflex was compared with the reflex latency of the WBV-IMR. In addition, simulations were performed at 25, 30, 35, 40, 45, and 50 Hz to determine the stretch frequency of the muscle during WBV. [Results] WBV-IMR latency (40.5 ± 0.8 ms; 95% confidence interval [CI]: 39.0-41.9 ms) was significantly longer than T-reflex latency (34.6 ± 0.5 ms; 95% CI: 33.6-35.5 ms) and the mean difference was 6.2 ms (95% CI of the difference: 4.7-7.7 ms). The simulations performed in the present study demonstrated that the frequency of the stretch signal would be twice the frequency of the vibration. [Conclusion] These findings do not support the notion that WBV-IMR can be explained by reference to a stretch-induced reflex.

7.
J Physiol ; 593(19): 4305-18, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26115007

RESUMO

KEY POINTS: Reflex responses of single motor units have been used for the study of spinal circuitries but the methods employed are invasive and limited to the assessment of a relatively small number of motor units. We propose a new approach to investigate reflexes on individual motor units based on high-density surface electromyography (HDsEMG) decomposition. The decomposition of HDsEMG has been previously validated in voluntary isometric contractions but never during reflex activities. The use of HDsEMG decomposition for reflex studies at the individual motor unit level, during constant force contractions, with excitatory and inhibitory stimuli, was validated here by the comparison of results with concurrently recorded intramuscular EMG signals. The validation results showed that HDsEMG decomposition allows an accurate quantification of reflex responses for a large number of individual motor units non-invasively, for both excitatory and inhibitory stimuli. ABSTRACT: We propose and validate a non-invasive method that enables accurate detection of the discharge times of a relatively large number of motor units during excitatory and inhibitory reflex stimulations. High-density surface electromyography (HDsEMG) and intramuscular EMG (iEMG) were recorded from the tibialis anterior muscle during ankle dorsiflexions performed at 5%, 10% and 20% of the maximum voluntary contraction (MVC) force, in nine healthy subjects. The tibial nerve (inhibitory reflex) and the peroneal nerve (excitatory reflex) were stimulated with constant current stimuli. In total, 416 motor units were identified from the automatic decomposition of the HDsEMG. The iEMG was decomposed using a state-of-the-art decomposition tool and provided 84 motor units (average of two recording sites). The reflex responses of the detected motor units were analysed using the peri-stimulus time histogram (PSTH) and the peri-stimulus frequencygram (PSF). The reflex responses of the common motor units identified concurrently from the HDsEMG and the iEMG signals showed an average disagreement (the difference between number of observed spikes in each bin relative to the mean) of 8.2 ± 2.2% (5% MVC), 6.8 ± 1.0% (10% MVC) and 7.5 ± 2.2% (20% MVC), for reflex inhibition, and 6.5 ± 4.1%, 12.0 ± 1.8% and 13.9 ± 2.4%, for reflex excitation. There was no significant difference between the characteristics of the reflex responses, such as latency, amplitude and duration, for the motor units identified by both techniques. Finally, reflex responses could be identified at higher force (4 of the 9 subjects performed contraction up to 50% MVC) using HDsEMG but not iEMG, because of the difficulty in decomposing the iEMG at high forces. In conclusion, single motor unit reflex responses can be estimated accurately and non-invasively in relatively large populations of motor units using HDsEMG. This non-invasive approach may enable a more thorough investigation of the synaptic input distribution on active motor units at various force levels.


Assuntos
Eletromiografia/métodos , Neurônios Motores/fisiologia , Reflexo/fisiologia , Adulto , Humanos , Masculino , Contração Muscular , Músculo Esquelético/fisiologia , Adulto Jovem
8.
Front Hum Neurosci ; 8: 536, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25100978

RESUMO

High rate stimulations of the neuromuscular system, such as continuous whole body vibration, tonic vibration reflex and high frequency electrical stimulation, are used in the physiological research with an increasing interest. In these studies, the neuronal circuitries underlying the reflex responses remain unclear due to the problem of determining the exact reflex latencies. We present a novel "cumulated average method" to determine the reflex latency during high rate stimulation of the nervous system which was proven to be significantly more accurate than the classical method. The classical method, cumulant density analysis, reveals the relationship between the two synchronously recorded signals as a function of the lag between the signals. The comparison of new method with the classical technique and their relative accuracy was tested using a computer simulation. In the simulated signals the EMG response latency was constructed to be exactly 40 ms. The new method accurately indicated the value of the simulated reflex latency (40 ms). However, the classical method showed that the lag time between the simulated triggers and the simulated signals was 49 ms. Simulation results illustrated that the cumulated average method is a reliable and more accurate method compared with the classical method. We therefore suggest that the new cumulated average method is able to determine the high rate stimulation induced reflex latencies more accurately than the classical method.

9.
Front Hum Neurosci ; 8: 504, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071531

RESUMO

The electrical activity of muscles can interfere with the electroencephalogram (EEG) signal considering the anatomical locations of facial or masticatory muscles surrounding the skull. In this study, we evaluated the possible interference of the resting activity of the temporalis muscle on the EEG under conventional EEG recording conditions. In 9 healthy adults EEG activity from 19 scalp locations and single motor unit (SMU) activity from anterior temporalis muscle were recorded in three relaxed conditions; eyes open, eyes closed, jaw dropped. The EEG signal was spike triggered averaged (STA) using the action potentials of SMUs as triggers to evaluate their reflections at various EEG recording sites. Resting temporalis SMU activity generated prominent reflections with different amplitudes, reaching maxima in the proximity of the recorded SMU. Interference was also notable at the scalp sites that are relatively far from the recorded SMU and even at the contralateral locations. Considering the great number of SMUs in the head and neck muscles, prominent contamination from the activity of only a single MU should indicate the susceptibility of EEG to muscle activity artifacts even under the rest conditions. This study emphasizes the need for efficient artifact evaluation methods which can handle muscle interferences.

11.
J Neurophysiol ; 111(3): 602-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24225537

RESUMO

Reflex responses of tibialis anterior motor units to stretch stimuli were investigated in human subjects. Three types of stretch stimuli were applied (tap-like, ramp-and-hold, and half-sine stretch). Stimulus-induced responses in single motor units were analyzed using the classical technique, which involved building average surface electromyogram (SEMG) and peristimulus time histograms (PSTH) from the discharge times of motor units and peristimulus frequencygrams (PSF) from the instantaneous discharge rates of single motor units. With the use of SEMG and PSTH, the tap-like stretch stimulus induced five separate reflex responses, on average. With the same single motor unit data, the PSF technique indicated that the tap stimulus induced only three reflex responses. Similar to the finding using the tap-like stretch stimuli, ramp-and-hold stimuli induced several peaks and troughs in the SEMG and PSTH. The PSF analyses displayed genuine increases in discharge rates underlying the peaks but not underlying the troughs. Half-sine stretch stimuli induced a long-lasting excitation followed by a long-lasting silent period in SEMG and PSTH. The increase in the discharge rate, however, lasted for the entire duration of the stimulus and continued during the silent period. The results are discussed in the light of the fact that the discharge rate of a motoneuron has a strong positive linear association with the effective synaptic current it receives and hence represents changes in the membrane potential more directly and accurately than the other indirect measures. This study suggests that the neuronal pathway of the human stretch reflex does not include inhibitory pathways.


Assuntos
Vias Neurais/fisiologia , Reflexo de Estiramento , Adulto , Humanos , Contração Isométrica , Perna (Membro)/inervação , Perna (Membro)/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico
12.
Front Hum Neurosci ; 7: 843, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367319

RESUMO

Double discharges (doublets) were recorded from human soleus (SOL), where they have never been reported before. The data analyzed in this study were collected from 12 healthy volunteers. The subjects were recruited for other studies, concerning: (1) estimation of motoneurons' (MNs) afterhyperpolarization (AHP) duration and (2) analysis of motor unit responses to nerve stimulation, and were not trained to voluntarily evoke doublets. The majority of intradoublet intervals fell into the commonly accepted range 2-20 ms. However, two SOL MNs from one presented exceptional doublets of intradoublet interval about 37 ms. This interval was virtually identical with the interval between second and third discharge in the few triplets recorded from another subject. It is hypothesized that triplets are generated by the delayed depolarization with the second narrow hump, which is the same as the hump responsible for exceptional doublets.

13.
Bioelectromagnetics ; 34(5): 349-57, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23436227

RESUMO

Platelets are subjected to extremely low frequency electromagnetic fields during standard aggregometry measurements owing to the use of a magnetic stir bar in the instrument. This study evaluates the effects of this magnetic field exposure on platelet aggregation by comparing the results obtained in a modified aggregometer. Blood samples from healthy volunteers were anticoagulated using citrate or heparin. Platelet-rich plasma (PRP) samples were prepared. A mechanical stirring device was attached to the aggregometer instead of the magnetic stir bar system. The PRP samples were stirred using a stirring rod tip that did not produce any magnetic fields in one channel of the aggregometer; in the other channel, a stirring rod carrying a small magnet at its tip was used. As a result, a magnetic field in the extremely low frequency range and in the amplitude range of 1.9-65 mT was applied to the platelets assigned to the channel where the magnetic stirring rod tip was used. Aggregation was induced using adenosine diphosphate (ADP), collagen, or epinephrine. The slopes, maximum aggregation values, and areas under the aggregation curves were compared between the magnetic and neutral stirring rod tip groups. For samples stirred with the magnetic stirring rod tip, a significant decrease was observed in 12 of the 14 parameters evaluated for aggregations induced with ADP or collagen compared to the neutral stirring rod tip, regardless of the method used for anticoagulation. This observation indicates that the magnetic stir bars used in standard aggregometry may significantly alter aggregation parameters and platelets may be possible targets of electromagnetic fields.


Assuntos
Campos Magnéticos , Imãs , Dispositivos Ópticos , Agregação Plaquetária/efeitos da radiação , Testes de Função Plaquetária/instrumentação , Difosfato de Adenosina/farmacologia , Adulto , Anticoagulantes/administração & dosagem , Área Sob a Curva , Coleta de Amostras Sanguíneas/métodos , Ácido Cítrico/administração & dosagem , Colágeno/farmacologia , Campos Eletromagnéticos , Epinefrina/farmacologia , Desenho de Equipamento , Feminino , Heparina/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Agregação Plaquetária/efeitos dos fármacos , Plasma Rico em Plaquetas/efeitos dos fármacos , Plasma Rico em Plaquetas/efeitos da radiação , Espectrofotometria/instrumentação , Adulto Jovem
14.
J Electromyogr Kinesiol ; 23(2): 275-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23098913

RESUMO

The use of surface electromyography (SEMG) in vibration studies is problematic since motion artifacts occupy the same frequency band with the SEMG signal containing information on synchronous motor unit activity. We hypothesize that using a harsher, 80-500 Hz band-pass filter and using rectification can help eliminate motion artifacts and provide a way to observe synchronous motor unit activity that is phase locked to vibration using SEMG recordings only. Multi Motor Unit (MMU) action potentials using intramuscular electrodes along with SEMG were recorded from the gastrocnemius medialis (GM) of six healthy male volunteers. Data were collected during whole body vibration, using vibration frequencies of 30 Hz, 35 Hz, 40 Hz or 50 Hz. A computer simulation was used to investigate the efficacy of filtering under different scenarios: with or without artifacts and/or motor unit synchronization. Our findings indicate that motor unit synchronization took place during WBV as verified by MMU recordings. A harsh filtering regimen along with rectification proved successful in demonstrating motor unit synchronization in SEMG recordings. Our findings were further supported by the results from the computer simulation, which indicated that filtering and rectification was efficient in discriminating motion artifacts from motor unit synchronization. We suggest that the proposed signal processing technique may provide a new methodology to evaluate the effects of vibration treatments using only SEMG. This is a major advantage, as this non-intrusive method is able to overcome movement artifacts and also indicate the synchronization of underlying motor units.


Assuntos
Potenciais de Ação/fisiologia , Algoritmos , Axônios/fisiologia , Eletromiografia/métodos , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Vibração , Adulto , Artefatos , Diagnóstico por Computador/métodos , Humanos , Masculino , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Electromagn Biol Med ; 31(4): 382-93, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22690688

RESUMO

PURPOSE: Electromagnetic fields have various effects on intracellular calcium levels, free oxygen radicals and various enzymes. The platelet activation pathway involves an increase in intracellular calcium levels and protein kinase C activation; and free oxygen radicals play a mediating role in this pathway. This study investigated whether 1 mT and 6 mT, 50 Hz magnetic fields had any effects on platelet aggregation. MATERIALS AND METHODS: Blood from healthy volunteers was anticoagulated with either citrate or heparin. Each sample was divided in half and assigned to exposure and control groups. Platelet rich plasma samples in the exposure group were exposed to a 1 mT or a 6 mT, 50 Hz magnetic field for 1.5 or 1 h, respectively. The samples from both exposure and control groups were simultaneously evaluated using a modified optical aggregometer. Adenosine-diphosphate, collagen, and epinephrine were used as inducing agents. The slopes of the aggregation curve, the maximum values and the areas under the curves were recorded and compared. RESULTS: A significant effect was observed only in the 1 mT-citrate group. It was found that magnetic field exposure significantly increased the maximum values and slopes of the collagen-induced aggregations. CONCLUSIONS: It was found that magnetic field exposure has an activating effect on platelet aggregation.


Assuntos
Campos Eletromagnéticos , Dispositivos Ópticos , Agregação Plaquetária/efeitos da radiação , Difosfato de Adenosina/farmacologia , Adulto , Citratos/farmacologia , Colágeno/farmacologia , Epinefrina/farmacologia , Feminino , Heparina/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Agregação Plaquetária/efeitos dos fármacos , Citrato de Sódio , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...