Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 283(2): 305-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26499089

RESUMO

UNLABELLED: A unique defense mechanisms by which Mycobacterium tuberculosis protects itself from nitrosative stress is based on the O2 -dependent NO-dioxygenase (NOD) activity of truncated hemoglobin 2/2HbN (Mt2/2HbN). The NOD activity largely depends on the efficiency of ligand migration to the heme cavity through a two-tunnel (long and short) system; recently, it was also correlated with the presence at the Mt2/2HbN N-terminus of a short pre-A region, not conserved in most 2/2HbNs, whose deletion results in a drastic reduction of NO scavenging. In the present study, we report the crystal structure of Mt2/2HbN-ΔpreA, lacking the pre-A region, at a resolution of 1.53 Å. We show that removal of the pre-A region results in long range effects on the protein C-terminus, promoting the assembly of a stable dimer, both in the crystals and in solution. In the Mt2/2HbN-ΔpreA dimer, access of heme ligands to the short tunnel is hindered. Molecular dynamics simulations show that the long tunnel branch is the only accessible pathway for O2 -ligand migration to/from the heme, and that the gating residue Phe(62)E15 partly restricts the diameter of the tunnel. Accordingly, kinetic measurements indicate that the kon value for peroxynitrite isomerization by Mt2/2HbN-ΔpreA-Fe(III) is four-fold lower relative to the full-length protein, and that NO scavenging by Mt2/2HbN-ΔpreA-Fe(II)-O2 is reduced by 35-fold. Therefore, we speculate that Mt2/2HbN evolved to host the pre-A region as a mechanism for preventing dimerization, thus reinforcing the survival of the microorganism against the reactive nitrosative stress in macrophages. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 5AB8.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Hemoglobinas Truncadas/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Dioxigenases/metabolismo , Heme/química , Heme/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/química , Ácido Peroxinitroso/metabolismo , Conformação Proteica , Multimerização Proteica , Hemoglobinas Truncadas/genética
2.
J Inorg Biochem ; 154: 103-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26598215

RESUMO

As part of the machinery to acquire, internalize and utilize heme as a source of iron from the host, some bacteria possess a canonical heme oxygenase, where heme plays the dual role of substrate and cofactor, the later catalyzing the cleavage of the heme moiety using O2 and electrons, and resulting in biliverdin, carbon monoxide and ferrous non-heme iron. We have previously reported that the Escherichia coli O157:H7 ChuS protein, which is not homologous to heme oxygenases, can bind and degrade heme in a reaction that releases carbon monoxide. Here, we have pursued a detailed characterization of such heme degradation reaction using stopped-flow UV-visible absorption spectrometry, the characterization of the intermediate species formed in such reaction by EPR spectroscopy and the identification of reaction products by NMR spectroscopy and Mass spectrometry. We show that hydrogen peroxide (in molar equivalent) is the key player in the degradation reaction, at variance to canonical heme oxygenases. While the initial intermediates of the reaction of ChuS with hydrogen peroxide (a ferrous keto π neutral radical and ferric verdoheme, both identified by EPR spectroscopy) are in common with heme oxygenases, a further and unprecedented reaction step, involving the cleavage of the porphyrin ring at adjacent meso-carbons, results in the release of hematinic acid (a monopyrrole moiety identified by NMR spectroscopy), a tripyrrole product (identified by Mass spectrometry) and non-heme iron in the ferric oxidation state (identified by EPR spectroscopy). Overall, the unprecedented reaction of E. coli O157:H7 ChuS provides evidence for a novel heme degradation activity in a Gram-negative bacterium.


Assuntos
Escherichia coli O157/enzimologia , Proteínas de Escherichia coli/química , Heme Oxigenase (Desciclizante)/química , Heme/química , Proteínas de Escherichia coli/fisiologia , Heme Oxigenase (Desciclizante)/fisiologia , Peróxido de Hidrogênio/química , Ferro/química , Cinética , Maleimidas/química , Propionatos/química , Piridinas/química , Pirróis/química
3.
Biochemistry ; 50(51): 11121-30, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-21999759

RESUMO

The potent nitric oxide dioxygenase (NOD) activity (trHbN-Fe²âº-O2 + (•)NO → trHbN-Fe³âº-OH2 + NO3⁻) of Mycobacterium tuberculosis truncated hemoglobin N (trHbN) protects aerobic respiration from inhibition by (•)NO. The high activity of trHbN has been attributed in part to the presence of numerous short-lived hydrophobic cavities that allow partition and diffusion of the gaseous substrates (•)NO and O2 to the active site. We investigated the relation between these cavities and the dynamics of the protein using solution NMR spectroscopy and molecular dynamics (MD). Results from both approaches indicate that the protein is mainly rigid with very limited motions of the backbone N-H bond vectors on the picoseconds-nanoseconds time scale, indicating that substrate diffusion and partition within trHbN may be controlled by side-chains movements. Model-free analysis also revealed the presence of slow motions (microseconds-milliseconds), not observed in MD simulations, for many residues located in helices B and G including the distal heme pocket Tyr33(B10). All currently known crystal structures and molecular dynamics data of truncated hemoglobins with the so-called pre-A N-terminal extension suggest a stable α-helical conformation that extends in solution. Moreover, a recent study attributed a crucial role to the pre-A helix for NOD activity. However, solution NMR data clearly show that in near-physiological conditions these residues do not adopt an α-helical conformation and are significantly disordered and that the helical conformation seen in crystal structures is likely induced by crystal contacts. Although this lack of order for the pre-A does not disagree with an important functional role for these residues, our data show that one should not assume an helical conformation for these residues in any functional interpretation. Moreover, future molecular dynamics simulations should not use an initial α-helical conformation for these residues in order to avoid a bias based on an erroneous initial structure for the N-termini residues. This work constitutes the first study of a truncated hemoglobin dynamics performed by solution heteronuclear relaxation NMR spectroscopy.


Assuntos
Proteínas de Bactérias/química , Mycobacterium tuberculosis/metabolismo , Hemoglobinas Truncadas/química , Proteínas de Bactérias/genética , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Mycobacterium tuberculosis/enzimologia , Óxido Nítrico/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Oxigenases/química , Oxigenases/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Conformação Proteica , Proteínas Recombinantes/química , Solubilidade , Hemoglobinas Truncadas/genética , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...