Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 8(3)2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28536289

RESUMO

Aneuploidy is usually deleterious in multicellular organisms but appears to be tolerated and potentially beneficial in unicellular organisms, including pathogens. Leishmania, a major protozoan parasite, is emerging as a new model for aneuploidy, since in vitro-cultivated strains are highly aneuploid, with interstrain diversity and intrastrain mosaicism. The alternation of two life stages in different environments (extracellular promastigotes and intracellular amastigotes) offers a unique opportunity to study the impact of environment on aneuploidy and gene expression. We sequenced the whole genomes and transcriptomes of Leishmania donovani strains throughout their adaptation to in vivo conditions mimicking natural vertebrate and invertebrate host environments. The nucleotide sequences were almost unchanged within a strain, in contrast to highly variable aneuploidy. Although high in promastigotes in vitro, aneuploidy dropped significantly in hamster amastigotes, in a progressive and strain-specific manner, accompanied by the emergence of new polysomies. After a passage through a sand fly, smaller yet consistent karyotype changes were detected. Changes in chromosome copy numbers were correlated with the corresponding transcript levels, but additional aneuploidy-independent regulation of gene expression was observed. This affected stage-specific gene expression, downregulation of the entire chromosome 31, and upregulation of gene arrays on chromosomes 5 and 8. Aneuploidy changes in Leishmania are probably adaptive and exploited to modulate the dosage and expression of specific genes; they are well tolerated, but additional mechanisms may exist to regulate the transcript levels of other genes located on aneuploid chromosomes. Our model should allow studies of the impact of aneuploidy on molecular adaptations and cellular fitness.IMPORTANCE Aneuploidy is usually detrimental in multicellular organisms, but in several microorganisms, it can be tolerated and even beneficial. Leishmania-a protozoan parasite that kills more than 30,000 people each year-is emerging as a new model for aneuploidy studies, as unexpectedly high levels of aneuploidy are found in clinical isolates. Leishmania lacks classical regulation of transcription at initiation through promoters, so aneuploidy could represent a major adaptive strategy of this parasite to modulate gene dosage in response to stressful environments. For the first time, we document the dynamics of aneuploidy throughout the life cycle of the parasite, in vitro and in vivo We show its adaptive impact on transcription and its interaction with regulation. Besides offering a new model for aneuploidy studies, we show that further genomic studies should be done directly in clinical samples without parasite isolation and that adequate methods should be developed for this.


Assuntos
Adaptação Biológica , Aneuploidia , Expressão Gênica , Leishmania donovani/genética , Animais , Cricetinae , Meio Ambiente , Perfilação da Expressão Gênica , Genoma de Protozoário , Humanos , Psychodidae , Análise de Sequência de DNA
2.
J Med Entomol ; 49(5): 967-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23025175

RESUMO

Biting midges of the genus Forcipomyia (Diptera: Ceratopogonidae) have recently been implicated as vectors of kinetoplastid parasites in the Leishmania enrietti complex. This study assesses susceptibility of one of the few successfully colonized Ceratopogonidae, Culicoides nubeculosus Meigen, to infection with Leishmania parasites infecting humans. While Leishmania infantum initially developed in the midgut of C. nubeculosus until 2 d postfeeding, parasite populations on day 3 were considerably reduced. Despite this, a polymerase chain reaction-based assay continued to indicate presence of L. infantum for up to 7 d after the bloodmeal. These findings are discussed within the wider context of implicating arthropods as vectors of Leishmania and it is suggested that conventional polymerase chain reaction use in vector-competence studies should be accompanied by direct microscopical observations.


Assuntos
Ceratopogonidae/parasitologia , Insetos Vetores/fisiologia , Leishmania enriettii/fisiologia , Animais , Feminino , Interações Hospedeiro-Parasita , Leishmaniose/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...