Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 145: 77-84, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29107809

RESUMO

Sanguinarine is a benzo[c]phenanthridine alkaloid with interesting cytotoxic properties, such as induction of oxidative DNA damage and very rapid apoptosis, which is not mediated by p53-dependent signaling. It has been previously documented that sanguinarine is reduced with NADH even in absence of any enzymes while being converted to its dihydro form. We found that the dark blue fluorescent species, observed during sanguinarine reduction with NADH and misinterpreted by Matkar et al. (Arch. Biochem. Biophys. 2008, 477, 43-52) as an anionic form of the alkaloid, is a covalent adduct formed by the interaction of NADH and sanguinarine. The covalent adduct is then converted slowly to the products, dihydrosanguinarine and NAD+, in the second step of reduction. The product of the reduction, dihydrosanguinarine, was continually re-oxidized by the atmospheric oxygen back to sanguinarine, resulting in further reacting with NADH and eventually depleting all NADH molecules. The ability of sanguinarine to diminish the pool of NADH and NADPH is further considered when explaining the sanguinarine-induced apoptosis in living cells.


Assuntos
Benzofenantridinas/metabolismo , Isoquinolinas/metabolismo , NAD/metabolismo , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Isoquinolinas/química , Isoquinolinas/farmacologia , Estrutura Molecular , NAD/química , Oxigênio/química , Oxigênio/metabolismo
2.
J Pharm Biomed Anal ; 121: 174-180, 2016 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-26808066

RESUMO

Selected benzo[c]phenathridine alkaloids were biotransformed using rat liver microsomes and identified by liquid chromatography and mass spectrometry. While the metabolites of commercially available sanguinarine and chelerythrine have been studied in detail, data about the metabolism of the minor alkaloids remained unknown. Reactions involved in transformation include single and/or double O-demethylation, demethylenation, reduction, and hydroxylation. Two metabolites, when isolated, purified and tested for toxicity, were found to be less toxic than the original compounds.


Assuntos
Alcaloides/metabolismo , Benzofenantridinas/metabolismo , Isoquinolinas/efeitos adversos , Isoquinolinas/química , Animais , Benzofenantridinas/efeitos adversos , Benzofenantridinas/química , Cromatografia Líquida/métodos , Hidroxilação , Masculino , Espectrometria de Massas/métodos , Microssomos Hepáticos/metabolismo , Ratos , Ratos Wistar
3.
Biol Cell ; 108(1): 1-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26482322

RESUMO

BACKGROUND INFORMATION: Macarpine (MA) is a quaternary benzophenanthridine plant alkaloid isolated from Macleaya microcarpa or Stylophorum lasiocarpum. Benzophenanthridine alkaloids are interesting natural products that display antiproliferative, antimicrobial, antifungal and anti-inflammatory activities, and also fluorescence properties. In a previous study, we demonstrated that thanks to its ability to interact with DNA and its spectral properties MA could be used as a supravital DNA probe for fluorescence microscopy and flow cytometry including analyses of the cell cycle. In this study, we evaluated the suitability of MA as a DNA dye for time-lapse microscopy and flow-cytometric cell sorting. RESULTS: Living A-375 and MEF cells stained with MA were monitored by time-lapse microscopy for 24 h. Mitoses were observed at MA concentrations up to 0.5 µg/ml during the first 2-3 h. After this period of time, cells treated with MA at concentrations of 0.75 and 0.5 µg/ml underwent apoptosis. Cells cultivated with MA at concentration of 0.25 µg/ml or lower survived throughout the 24 h period. Toxicity of MA was dependent on light wavelength and frequency of image capturing. The intensity of MA fluorescence decreased during the incubation. MA concentration of 0.1 µg/ml was identified as the most suitable for live cell imaging with respect to fluorescence intensity and toxicity. MA at the concentration 10 µg/ml was used for sorting of enhanced green fluorescent protein (EGFP)-labelled neurons and fibroblasts yielding profiles similar to those obtained with DRAQ5. Contrary to DRAQ5, MA-stained cells survived in culture, and the sorted cells lost the MA signal suggesting reversible binding of the dye to the DNA. CONCLUSION: The results proved that MA may readily be used for chromosomes depicting and mitosis monitoring by time-lapse microscopy. In addition, MA has shown to be a suitable probe for sorting of EGFP-labelled cells, including neurons, that survived the labelling process. SIGNIFICANCE: In consideration of the results, we highly anticipate an onward use of MA in a broad range of applications based on live cell sorting and imaging, for example, cell synchronisation and monitoring of proliferation as an important experimental and/or diagnostic utility.


Assuntos
Benzofenantridinas/análise , Ciclo Celular/fisiologia , DNA/análise , Citometria de Fluxo , Técnicas de Cultura de Células , Separação Celular/métodos , Sobrevivência Celular , Citometria de Fluxo/métodos , Corantes Fluorescentes/análise , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência/métodos
4.
Biochem Res Int ; 2015: 617620, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509084

RESUMO

The California poppy (Eschscholzia californica Cham.) contains a variety of natural compounds including several alkaloids found exclusively in this plant. Because of the sedative, anxiolytic, and analgesic effects, this herb is currently sold in pharmacies in many countries. However, our understanding of these biological effects at the molecular level is still lacking. Alkaloids detected in E. californica could be hypothesized to act at GABAA receptors, which are widely expressed in the brain mainly at the inhibitory interneurons. Electrophysiological studies on a recombinant α 1 ß 2 γ 2 GABAA receptor showed no effect of N-methyllaurotetanine at concentrations lower than 30 µM. However, (S)-reticuline behaved as positive allosteric modulator at the α 3, α 5, and α 6 isoforms of GABAA receptors. The depressant properties of aerial parts of E. californica are assigned to chloride-current modulation by (S)-reticuline at the α 3 ß 2 γ 2 and α 5 ß 2 γ 2 GABAA receptors. Interestingly, α 1, α 3, and α 5 were not significantly affected by (R)-reticuline, 1,2-tetrahydroreticuline, codeine, and morphine-suspected (S)-reticuline metabolites in the rodent brain.

5.
PLoS One ; 10(6): e0129925, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26091027

RESUMO

Quaternary benzo[c]phenanthridine alkaloids are secondary metabolites of the plant families Papaveraceae, Rutaceae, and Ranunculaceae with anti-inflammatory, antifungal, antimicrobial and anticancer activities. Their spectral changes induced by the environment could be used to understand their interaction with biomolecules as well as for analytical purposes. Spectral shifts, quantum yield and changes in lifetime are presented for the free form of alkaloids in solvents of different polarity and for alkaloids bound to DNA. Quantum yields range from 0.098 to 0.345 for the alkanolamine form and are below 0.033 for the iminium form. Rise of fluorescence lifetimes (from 2-5 ns to 3-10 ns) and fluorescence intensity are observed after binding of the iminium form to the DNA for most studied alkaloids. The alkanolamine form does not bind to DNA. Acid-base equilibrium constant of macarpine is determined to be 8.2-8.3. Macarpine is found to have the highest increase of fluorescence upon DNA binding, even under unfavourable pH conditions. This is probably a result of its unique methoxy substitution at C12 a characteristic not shared with other studied alkaloids. Association constant for macarpine-DNA interaction is 700000 M(-1).


Assuntos
Alcaloides/química , Benzofenantridinas/química , DNA/química , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...