Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769424

RESUMO

The construction of synthetic gene circuits in plants has been limited by a lack of orthogonal and modular parts. Here, we implement a CRISPR (clustered regularly interspaced short palindromic repeats) interference (CRISPRi)-based reversible gene circuit platform in plants. We create a toolkit of engineered repressible promoters of different strengths and construct NOT and NOR gates in Arabidopsis thaliana protoplasts. We determine the optimal processing system to express single guide RNAs from RNA Pol II promoters to introduce NOR gate programmability for interfacing with host regulatory sequences. The performance of a NOR gate in stably transformed Arabidopsis plants demonstrates the system's programmability and reversibility in a complex multicellular organism. Furthermore, cross-species activity of CRISPRi-based logic gates is shown in Physcomitrium patens, Triticum aestivum and Brassica napus protoplasts. Layering multiple NOR gates together creates OR, NIMPLY and AND logic functions, highlighting the modularity of our system. Our CRISPRi circuits are orthogonal, compact, reversible, programmable and modular and provide a platform for sophisticated spatiotemporal control of gene expression in plants.

2.
Nat Plants ; 7(8): 1050-1064, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34373603

RESUMO

Plants are constantly adapting to ambient fluctuations through spatial and temporal transcriptional responses. Here, we implemented the latest-generation RNA imaging system and combined it with microfluidics to visualize transcriptional regulation in living Arabidopsis plants. This enabled quantitative measurements of the transcriptional activity of single loci in single cells, in real time and under changing environmental conditions. Using phosphate-responsive genes as a model, we found that active genes displayed high transcription initiation rates (one initiation event every ~3 s) and frequently clustered together in endoreplicated cells. We observed gene bursting and large allelic differences in single cells, revealing that at steady state, intrinsic noise dominated extrinsic variations. Moreover, we established that transcriptional repression triggered in roots by phosphate, a crucial macronutrient limiting plant development, occurred with unexpectedly fast kinetics (on the order of minutes) and striking heterogeneity between neighbouring cells. Access to single-cell RNA polymerase II dynamics in live plants will benefit future studies of signalling processes.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Fosfatos/metabolismo , Células Vegetais/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Transcrição Gênica , Regulação da Expressão Gênica de Plantas , Cinética , RNA Polimerase II/genética
3.
Plant Cell Physiol ; 60(6): 1260-1273, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753691

RESUMO

Jasmonic acid (JA) biosynthesis and signaling are activated in Arabidopsis cultivated in phosphate (Pi) deprived conditions. This activation occurs mainly in photosynthetic tissues and is less important in roots. In leaves, the enhanced biosynthesis of JA coincides with membrane glycerolipid remodeling triggered by the lack of Pi. We addressed the possible role of JA on the dynamics and magnitude of glycerolipid remodeling in response to Pi deprivation and resupply. Based on combined analyses of gene expression, JA biosynthesis and glycerolipid remodeling in wild-type Arabidopsis and in the coi1-16 mutant, JA signaling seems important in the determination of the basal levels of phosphatidylcholine, phosphatidic acid (PA), monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol. JA impact on MGDG steady state level and fluctuations seem contradictory. In the coi1-16 mutant, the steady state level of MGDG is higher, possibly due to a higher level of PA in the mutant, activating MGD1, and to an increased expression of MGD3. These results support a possible impact of JA in limiting the overall content of this lipid. Concerning lipid variations, upon Pi deprivation, JA seems rather associated with a specific MGDG increase. Following Pi resupply, whereas the expression of glycerolipid remodeling genes returns to basal level, JA biosynthesis and signaling genes are still upregulated, likely due to a JA-induced positive feedback remaining active. Distinct impacts on enzymes synthesizing MGDG, that is, downregulating MGD3, possibly activating MGD1 expression and limiting the activation of MGD1 via PA, might allow JA playing a role in a sophisticated fine tuning of galactolipid variations.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Glicolipídeos/metabolismo , Oxilipinas/metabolismo , Fosfatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Homeostase , Transdução de Sinais
4.
Elife ; 72018 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-29453864

RESUMO

All living organisms require a variety of essential elements for their basic biological functions. While the homeostasis of nutrients is highly intertwined, the molecular and genetic mechanisms of these dependencies remain poorly understood. Here, we report a discovery of a molecular pathway that controls phosphate (Pi) accumulation in plants under Zn deficiency. Using genome-wide association studies, we first identified allelic variation of the Lyso-PhosphatidylCholine (PC) AcylTransferase 1 (LPCAT1) gene as the key determinant of shoot Pi accumulation under Zn deficiency. We then show that regulatory variation at the LPCAT1 locus contributes significantly to this natural variation and we further demonstrate that the regulation of LPCAT1 expression involves bZIP23 TF, for which we identified a new binding site sequence. Finally, we show that in Zn deficient conditions loss of function of LPCAT1 increases the phospholipid Lyso-PhosphatidylCholine/PhosphatidylCholine ratio, the expression of the Pi transporter PHT1;1, and that this leads to shoot Pi accumulation.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Homeostase , Fosfatos/metabolismo , Oligoelementos/metabolismo , Zinco/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Brotos de Planta/enzimologia , Brotos de Planta/metabolismo , Ligação Proteica
5.
Plant Physiol ; 176(4): 2943-2962, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475899

RESUMO

Phosphate starvation-mediated induction of the HAD-type phosphatases PPsPase1 (AT1G73010) and PECP1 (AT1G17710) has been reported in Arabidopsis (Arabidopsis thaliana). However, little is known about their in vivo function or impact on plant responses to nutrient deficiency. The preferences of PPsPase1 and PECP1 for different substrates have been studied in vitro but require confirmation in planta. Here, we examined the in vivo function of both enzymes using a reverse genetics approach. We demonstrated that PPsPase1 and PECP1 affect plant phosphocholine and phosphoethanolamine content, but not the pyrophosphate-related phenotypes. These observations suggest that the enzymes play a similar role in planta related to the recycling of polar heads from membrane lipids that is triggered during phosphate starvation. Altering the expression of the genes encoding these enzymes had no effect on lipid composition, possibly due to compensation by other lipid recycling pathways triggered during phosphate starvation. Furthermore, our results indicated that PPsPase1 and PECP1 do not influence phosphate homeostasis, since the inactivation of these genes had no effect on phosphate content or on the induction of molecular markers related to phosphate starvation. A combination of transcriptomics and imaging analyses revealed that PPsPase1 and PECP1 display a highly dynamic expression pattern that closely mirrors the phosphate status. This temporal dynamism, combined with the wide range of induction levels, broad expression, and lack of a direct effect on Pi content and regulation, makes PPsPase1 and PECP1 useful molecular markers of the phosphate starvation response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Etanolaminas/metabolismo , Pirofosfatase Inorgânica/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilcolina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Homeostase , Pirofosfatase Inorgânica/genética , Lipídeos de Membrana/metabolismo , Mutação , Monoéster Fosfórico Hidrolases/genética
6.
Genome Biol ; 18(1): 172, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28911330

RESUMO

BACKGROUND: Seed germination involves progression from complete metabolic dormancy to a highly active, growing seedling. Many factors regulate germination and these interact extensively, forming a complex network of inputs that control the seed-to-seedling transition. Our understanding of the direct regulation of gene expression and the dynamic changes in the epigenome and small RNAs during germination is limited. The interactions between genome, transcriptome and epigenome must be revealed in order to identify the regulatory mechanisms that control seed germination. RESULTS: We present an integrated analysis of high-resolution RNA sequencing, small RNA sequencing and MethylC sequencing over ten developmental time points in Arabidopsis thaliana seeds, finding extensive transcriptomic and epigenomic transformations associated with seed germination. We identify previously unannotated loci from which messenger RNAs are expressed transiently during germination and find widespread alternative splicing and divergent isoform abundance of genes involved in RNA processing and splicing. We generate the first dynamic transcription factor network model of germination, identifying known and novel regulatory factors. Expression of both microRNA and short interfering RNA loci changes significantly during germination, particularly between the seed and the post-germinative seedling. These are associated with changes in gene expression and large-scale demethylation observed towards the end of germination, as the epigenome transitions from an embryo-like to a vegetative seedling state. CONCLUSIONS: This study reveals the complex dynamics and interactions of the transcriptome and epigenome during seed germination, including the extensive remodelling of the seed DNA methylome from an embryo-like to vegetative-like state during the seed-to-seedling transition. Data are available for exploration in a user-friendly browser at https://jbrowse.latrobe.edu.au/germination_epigenome .


Assuntos
Arabidopsis/genética , Epigênese Genética , Germinação/genética , Transcriptoma , Metilação de DNA , DNA de Plantas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs/metabolismo , Modelos Genéticos , RNA de Plantas , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
7.
Curr Opin Plant Biol ; 39: 1-7, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28441589

RESUMO

The ability of plants to appropriately respond to the soil nutrient availability is of primary importance for their development and to complete their life cycle. Deciphering these multifaceted adaptive mechanisms remains a major challenge for scientists to date. Recent technological breakthroughs now enable to assess the dynamism and complexity of these processes at unprecedented resolution. In this review, we present some of the most recent findings on the involvement of histone modifications, histone variants and DNA methylation in response to nutrient stresses as well as discussing the potential roles these chromatin changes could serve as priming or as trans-generational stress memory mechanisms.


Assuntos
Montagem e Desmontagem da Cromatina , Metilação de DNA , Histonas/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Código das Histonas
8.
Int J Mol Sci ; 18(3)2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28287426

RESUMO

Rice is the main staple crop for one-third of the world population. To maximize yields, large quantities and constant input of fertilizers containing essential nutrients such as phosphorus (P) and iron (Fe) are added. Rice can germinate in both aerobic and anaerobic conditions, but the crosstalk between oxygen (O2) and nutrients such as P and Fe on plant growth remains obscure. The aim of this work was to test whether such interactions exist, and, if so, if they are conserved between up- and lowland rice varieties. To do so, we assessed shoot and root biomass as well as inorganic phosphate (Pi) accumulation in four rice varieties, including two lowland rice varieties Nipponbare and Suphanburi 1 (SPR1) (adapted to non-aerated condition) and two upland rice varieties CMU122 and Sew Mae Jun (SMJ) (adapted to aerated condition) under various conditions of Pi and/or Fe deficiencies, in aerated and non-areated solution. Under these different experimental conditions, our results revealed that the altered shoot biomass in Nipponbare and SPR1 was O2-dependent but to a lesser extent in CMU122 and SMJ cultivars. In this perspective, discovering the biological significance and molecular basis of these mineral elements and O2 signal interaction is needed to fully appreciate the performance of plants to multiple environmental changes.


Assuntos
Deficiências de Ferro , Oryza/metabolismo , Oxigênio/metabolismo , Fósforo/deficiência , Ecossistema , Variação Genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transdução de Sinais
9.
Plant Cell Environ ; 40(8): 1487-1499, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28337762

RESUMO

Plants are often confronted to nutrient limiting conditions, such as inorganic phosphate (Pi) deficiency, resulting in a reduction in growth and yield. PHO2, encoding a ubiquitin-conjugating E2 enzyme, is a central component of the Pi-starvation response signalling pathway. A yeast-two-hybrid screen using Oryza sativa (rice) PHO2 as bait, revealed an interaction between OsPHO2 and OsGIGANTEA, a key regulator of flowering time, which was confirmed using bimolecular fluorescence complementation (BiFC). Characterization of rice Osgi and Ospho2 mutants revealed that they displayed several similar phenotypic features supporting a physiological role for this interaction. Reduced growth, leaf tip necrosis, delayed flowering and over-accumulation of Pi in leaves compared to wild type were shared features of Osgi and Ospho2 plants. Pi analysis of individual leaves demonstrated that Osgi, similar to Ospho2 mutants, were impaired in Pi remobilization from old to young leaves, albeit to a lesser extent. Transcriptome analyses revealed more than 55% of the genes differentially expressed in Osgi plants overlapped with the set of differentially expressed genes in Ospho2 plants. The interaction between OsPHO2 and OsGI links high-level regulators of Pi homeostasis and development in rice.


Assuntos
Homeostase , Oryza/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Biomassa , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Ligação Proteica , Fatores de Tempo , Transcriptoma/genética
10.
Mol Biol Evol ; 34(6): 1505-1516, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333296

RESUMO

The de novo evolution of genes and the novel proteins they encode has stimulated much interest in the contribution such innovations make to the diversity of life. Most research on this de novo evolution focuses on transcripts, so studies on the biochemical steps that can enable completely new proteins to evolve and the time required to do so have been lacking. Sunflower Preproalbumin with SFTI-1 (PawS1) is an unusual albumin precursor because in addition to producing albumin it also yields a potent, bicyclic protease-inhibitor called SunFlower Trypsin Inhibitor-1 (SFTI-1). Here, we show how this inhibitor peptide evolved stepwise over tens of millions of years. To trace the origin of the inhibitor peptide SFTI-1, we assembled seed transcriptomes for 110 sunflower relatives whose evolution could be resolved by a chronogram, which allowed dates to be estimated for the various stages of molecular evolution. A genetic insertion event in an albumin precursor gene ∼45 Ma introduced two additional cleavage sites for protein maturation and conferred duality upon PawS1-Like genes such that they also encode a small buried macrocycle. Expansion of this region, including two Cys residues, enlarged the peptide ∼34 Ma and made the buried peptides bicyclic. Functional specialization into a protease inhibitor occurred ∼23 Ma. These findings document the evolution of a novel peptide inside a benign region of a pre-existing protein. We illustrate how a novel peptide can evolve without de novo gene evolution and, critically, without affecting the function of what becomes the protein host.


Assuntos
Helianthus/genética , Peptídeos Cíclicos/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Evolução Biológica , Evolução Molecular , Modelos Moleculares , Mutagênese Insercional/genética , Peptídeos , Peptídeos Cíclicos/metabolismo , Filogenia , Pré-Albumina/genética , Precursores de Proteínas/genética , Sementes/genética
11.
Plant Cell ; 29(3): 461-473, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28298518

RESUMO

Bowman-Birk Inhibitors (BBIs) are a well-known family of plant protease inhibitors first described 70 years ago. BBIs are known only in the legume (Fabaceae) and cereal (Poaceae) families, but peptides that mimic their trypsin-inhibitory loops exist in sunflowers (Helianthus annuus) and frogs. The disparate biosynthetic origins and distant phylogenetic distribution implies these loops evolved independently, but their structural similarity suggests a common ancestor. Targeted bioinformatic searches for the BBI inhibitory loop discovered highly divergent BBI-like sequences in the seedless, vascular spikemoss Selaginella moellendorffii Using de novo transcriptomics, we confirmed expression of five transcripts in S. moellendorffii whose encoded proteins share homology with BBI inhibitory loops. The most highly expressed, BBI3, encodes a protein that inhibits trypsin. We needed to mutate two lysine residues to abolish trypsin inhibition, suggesting BBI3's mechanism of double-headed inhibition is shared with BBIs from angiosperms. As Selaginella belongs to the lycopod plant lineage, which diverged ∼200 to 230 million years before the common ancestor of angiosperms, its BBI-like proteins imply there was a common ancestor for legume and cereal BBIs. Indeed, we discovered BBI sequences in six angiosperm families outside the Fabaceae and Poaceae. These findings provide the evolutionary missing links between the well-known legume and cereal BBI gene families.


Assuntos
Selaginellaceae/metabolismo , Inibidores da Tripsina/metabolismo , Evolução Molecular , Fabaceae/metabolismo , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo , Poaceae/metabolismo
12.
Crit Rev Biotechnol ; 37(7): 898-910, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28076998

RESUMO

Phosphorus (P) is an essential macronutrient for all living organisms. In plants, P is taken up from the rhizosphere by the roots mainly as inorganic phosphate (Pi), which is required in large and sufficient quantities to maximize crop yields. In today's agricultural society, crop yield is mostly ensured by the excessive use of Pi fertilizers, a costly practice neither eco-friendly or sustainable. Therefore, generating plants with improved P use efficiency (PUE) is of major interest. Among the various strategies employed to date, attempts to engineer genetically modified crops with improved capacity to utilize phytate (PA), the largest soil P form and unfortunately not taken up by plants, remains a key challenge. To meet these challenges, we need a better understanding of the mechanisms regulating Pi sensing, signaling, transport and storage in plants. In this review, we summarize the current knowledge on these aspects, which are mainly gained from investigations conducted in Arabidopsis thaliana, and we extended it to those available on an economically important crop, wheat. Strategies to enhance the PA use, through the use of bacterial or fungal phytases and other attempts of reducing seed PA levels, are also discussed. We critically review these data in terms of their potential for use as a technology for genetic manipulation of PUE in wheat, which would be both economically and environmentally beneficial.


Assuntos
Arabidopsis/metabolismo , 6-Fitase , Fosfatos , Ácido Fítico , Triticum
13.
Plant J ; 89(4): 805-824, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27859855

RESUMO

Detailed molecular profiling of Oryza sativa (rice) was carried out to uncover the features that are essential for germination and early seedling growth under anoxic conditions. Temporal analysis of the transcriptome and methylome from germination to young seedlings under aerobic and anaerobic conditions revealed 82% similarity in the transcriptome and no differences in the epigenome up to 24 h. Following germination, significant changes in the transcriptome and DNA methylation were observed between 4-day aerobically and anaerobically grown coleoptiles. A link between the epigenomic state and cell division versus cell elongation is suggested, as no differences in DNA methylation were observed between 24-h aerobically and anaerobically germinating embryos, when there is little cell division. After that, epigenetic changes appear to correlate with differences between cell elongation (anaerobic conditions) versus cell division (aerobic conditions) in the coleoptiles. Re-oxygenation of 3-day anaerobically grown seedlings resulted in rapid transcriptomic changes in DNA methylation in these coleoptiles. Unlike the transcriptome, changes in DNA methylation upon re-oxygenation did not reflect those seen in aerobic coleoptiles, but instead, reverted to a pattern similar to dry seeds. Reversion to the 'dry seed' state of DNA methylation upon re-oxygenation may act to 'reset the clock' for the rapid molecular changes and cell division that result upon re-oxygenation.


Assuntos
Cotilédone/genética , Germinação/genética , Oryza/genética , Oxigênio/metabolismo , Transcriptoma/genética , Cotilédone/metabolismo , Cotilédone/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia
14.
Plant Physiol ; 169(4): 2822-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424157

RESUMO

To maintain a stable cytosol phosphate (Pi) concentration, plant cells store Pi in their vacuoles. When the Pi concentration in the cytosol decreases, Pi is exported from the vacuole into the cytosol. This export is mediated by Pi transporters on the tonoplast. In this study, we demonstrate that SYG1, PHO81, and XPR1 (SPX)-Major Facility Superfamily (MFS) proteins have a similar structure with yeast (Saccharomyces cerevisiae) low-affinity Pi transporters Phosphatase87 (PHO87), PHO90, and PHO91. OsSPX-MFS1, OsSPX-MFS2, and OsSPX-MFS3 all localized on the tonoplast of rice (Oryza sativa) protoplasts, even in the absence of the SPX domain. At high external Pi concentration, OsSPX-MFS3 could partially complement the yeast mutant strain EY917 under pH 5.5, which lacks all five Pi transporters present in yeast. In oocytes, OsSPX-MFS3 was shown to facilitate Pi influx or efflux depending on the external pH and Pi concentrations. In contrast to tonoplast localization in plants cells, OsSPX-MFS3 was localized to the plasma membrane when expressed in both yeast and oocytes. Overexpression of OsSPX-MFS3 results in decreased Pi concentration in the vacuole of rice tissues. We conclude that OsSPX-MFS3 is a low-affinity Pi transporter that mediates Pi efflux from the vacuole into cytosol and is coupled to proton movement.


Assuntos
Homeostase , Oryza/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Membrana Celular/metabolismo , Citosol/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Microscopia Confocal , Dados de Sequência Molecular , Oócitos/metabolismo , Oryza/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Plantas/genética , Protoplastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Vacúolos/metabolismo , Xenopus laevis
15.
Elife ; 42015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26196146

RESUMO

Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress.


Assuntos
Metilação de DNA , DNA de Plantas/metabolismo , Regulação da Expressão Gênica , Elementos Reguladores de Transcrição , Estresse Fisiológico , 5-Metilcitosina/análise , Arabidopsis/fisiologia , DNA de Plantas/química , Genoma de Planta , Oryza/fisiologia , Fosfatos/metabolismo , Análise de Sequência de DNA
16.
Plant Methods ; 10(1): 34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364374

RESUMO

BACKGROUND: Studying gene evolution in non-model species by PCR-based approaches is limited to highly conserved genes. The plummeting cost of next generation sequencing enables the application of de novo transcriptomics to any species. RESULTS: Here we describe how to apply de novo transcriptomics to pursue the evolution of a single gene of interest. We follow a rapidly evolving seed protein that encodes small, stable peptides. We use software that needs limited bioinformatics background and assemble four de novo seed transcriptomes. To demonstrate the quality of the assemblies, we confirm the predicted genes at the peptide level on one species which has over ten copies of our gene of interest. We explain strategies that favour assembly of low abundance genes, what assembly parameters help capture the maximum number of transcripts, how to develop a suite of control genes to test assembly quality and we compare several sequence depths to optimise cost and data volume. CONCLUSIONS: De novo transcriptomics is an effective approach for studying gene evolution in species for which genome support is lacking.

17.
BMC Genomics ; 15: 230, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24666749

RESUMO

BACKGROUND: Highly adapted plant species are able to alter their root architecture to improve nutrient uptake and thrive in environments with limited nutrient supply. Cluster roots (CRs) are specialised structures of dense lateral roots formed by several plant species for the effective mining of nutrient rich soil patches through a combination of increased surface area and exudation of carboxylates. White lupin is becoming a model-species allowing for the discovery of gene networks involved in CR development. A greater understanding of the underlying molecular mechanisms driving these developmental processes is important for the generation of smarter plants for a world with diminishing resources to improve food security. RESULTS: RNA-seq analyses for three developmental stages of the CR formed under phosphorus-limited conditions and two of non-cluster roots have been performed for white lupin. In total 133,045,174 high-quality paired-end reads were used for a de novo assembly of the root transcriptome and merged with LAGI01 (Lupinus albus gene index) to generate an improved LAGI02 with 65,097 functionally annotated contigs. This was followed by comparative gene expression analysis. We show marked differences in the transcriptional response across the various cluster root stages to adjust to phosphate limitation by increasing uptake capacity and adjusting metabolic pathways. Several transcription factors such as PLT, SCR, PHB, PHV or AUX/IAA with a known role in the control of meristem activity and developmental processes show an increased expression in the tip of the CR. Genes involved in hormonal responses (PIN, LAX, YUC) and cell cycle control (CYCA/B, CDK) are also differentially expressed. In addition, we identify primary transcripts of miRNAs with established function in the root meristem. CONCLUSIONS: Our gene expression analysis shows an intricate network of transcription factors and plant hormones controlling CR initiation and formation. In addition, functional differences between the different CR developmental stages in the acclimation to phosphorus starvation have been identified.


Assuntos
Redes Reguladoras de Genes/genética , Lupinus/genética , Análise por Conglomerados , Sequenciamento de Nucleotídeos em Larga Escala , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
18.
Plant Signal Behav ; 9(4): e28319, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24614023

RESUMO

Phosphate (Pi) limitation is one of the major factors negatively impacting crop yield worldwide. Next generation sequencing (NGS) was used to profile the transcriptomes of rice (Oryza sativa) roots and shoots after phosphate starvation and recovery, shedding further light on the complex and dynamic mechanisms involved in Pi homeostasis. The use of NGS also enabled the identification of previously not annotated loci and novel isoforms of genes that are specifically induced by Pi starvation. Furthermore, phosphate re-feeding was observed to have a unique response with a variety of transcription factors and kinases induced in a transient manner. Expression profiles of miRNAs were also assessed upon long-term Pi starvation in roots and shoots revealing several novel miRNAs associated with Pi starvation. Altogether, this study provides key findings regarding Pi homeostasis in plants that will provide a valuable resource for research aimed at generating crops with increased Pi acquisition/use efficiency.


Assuntos
Oryza/metabolismo , Fosfatos/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Genoma de Planta
19.
Plant Cell ; 25(11): 4285-304, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24249833

RESUMO

Using rice (Oryza sativa) as a model crop species, we performed an in-depth temporal transcriptome analysis, covering the early and late stages of Pi deprivation as well as Pi recovery in roots and shoots, using next-generation sequencing. Analyses of 126 paired-end RNA sequencing libraries, spanning nine time points, provided a comprehensive overview of the dynamic responses of rice to Pi stress. Differentially expressed genes were grouped into eight sets based on their responses to Pi starvation and recovery, enabling the complex signaling pathways involved in Pi homeostasis to be untangled. A reference annotation-based transcript assembly was also generated, identifying 438 unannotated loci that were differentially expressed under Pi starvation. Several genes also showed induction of unannotated splice isoforms under Pi starvation. Among these, PHOSPHATE2 (PHO2), a key regulator of Pi homeostasis, displayed a Pi starvation-induced isoform, which was associated with increased translation activity. In addition, microRNA (miRNA) expression profiles after long-term Pi starvation in roots and shoots were assessed, identifying 20 miRNA families that were not previously associated with Pi starvation, such as miR6250. In this article, we present a comprehensive spatio-temporal transcriptome analysis of plant responses to Pi stress, revealing a large number of potential key regulators of Pi homeostasis in plants.


Assuntos
Oryza/genética , Fosfatos/metabolismo , Raízes de Plantas/genética , Brotos de Planta/genética , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase/genética , MicroRNAs , Oryza/metabolismo , Fosfatos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
20.
Plant Cell ; 25(10): 4166-82, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24096344

RESUMO

cis-natural antisense transcripts (cis-NATs) are widespread in plants and are often associated with downregulation of their associated sense genes. We found that a cis-NAT positively regulates the level of a protein critical for phosphate homeostasis in rice (Oryza sativa). PHOSPHATE1;2 (PHO1;2), a gene involved in phosphate loading into the xylem in rice, and its associated cis-NATPHO1;2 are both controlled by promoters active in the vascular cylinder of roots and leaves. While the PHO1;2 promoter is unresponsive to the plant phosphate status, the cis-NATPHO1;2 promoter is strongly upregulated under phosphate deficiency. Expression of both cis-NATPHO1;2 and the PHO1;2 protein increased in phosphate-deficient plants, while the PHO1;2 mRNA level remained stable. Downregulation of cis-NATPHO1;2 expression by RNA interference resulted in a decrease in PHO1;2 protein, impaired the transfer of phosphate from root to shoot, and decreased seed yield. Constitutive overexpression of NATPHO1;2 in trans led to a strong increase of PHO1;2, even under phosphate-sufficient conditions. Under all conditions, no changes occurred in the level of expression, sequence, or nuclear export of PHO1;2 mRNA. However, expression of cis-NATPHO1;2 was associated with a shift of both PHO1;2 and cis-NATPHO1;2 toward the polysomes. These findings reveal an unexpected role for cis-NATPHO1;2 in promoting PHO1;2 translation and affecting phosphate homeostasis and plant fitness.


Assuntos
Elementos Facilitadores Genéticos , Oryza/genética , Fosfatos/metabolismo , RNA Antissenso/genética , Regulação da Expressão Gênica de Plantas , Homeostase , Dados de Sequência Molecular , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA de Plantas/genética , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...