Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Wound J ; 19(8): 2124-2135, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35470982

RESUMO

Chronic wounds fail to progress through the normal stages of healing, with the largest remediable cause of chronicity being presence of a multi-species biofilm. Removal of biofilm from the wound environment is central to wound care. A device for mechanically removing biofilms from wounds has been devised. The removal is caused by small-scale liquid currents and shear, generated by acoustically activated microscopic air bubbles. These bubbles and acoustic waves are delivered onto the wound by a gentle liquid stream, allowing cleaning in situ and removal of debris in the run-off liquid. We have investigated if this liquid acoustic wound stream (LAWS) can remove bacterial biofilm from soft biological wound models and studied the effect of LAWS on the cellular tissues of the substrate. LAWS will efficiently remove early Pseudomonas aeruginosa biofilm from an artificial wound in a pig's trotter, 24 hours-mature biofilm of P. aeruginosa from a pre-wounded human full thickness skin model (EpiDerm FT), and 3-day mature biofilm of P. aeruginosa or Staphylococcus aureus from a porcine skin explant. Histological examinations of uninfected EpiDerm models that had been treated by LAWS and then stained with Haematoxylin and Eosin, demonstrated no damage to the human tissue, and wound diameter was smaller in the treated skin models compared with untreated samples. Immunofluorescence staining for cytokeratin 14 showed that keratinocytes had migrated further across the wound in the uninfected samples treated by LAWS. We discuss the implications for wound healing and propose further laboratory and clinical studies to demonstrate the removal of biofilm from patients with chronic leg ulcers and the impact on healing.


Assuntos
Lesões dos Tecidos Moles , Infecção dos Ferimentos , Suínos , Animais , Humanos , Infecção dos Ferimentos/tratamento farmacológico , Biofilmes , Pseudomonas aeruginosa , Lesões dos Tecidos Moles/microbiologia , Acústica
2.
Ultrasound Med Biol ; 47(6): 1616-1630, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33640170

RESUMO

In this study, we investigated the effects of an ultrasonically activated stream (UAS) on the removal of microbial contaminants from spinach leaves. The microbial loads on samples cleaned with and without UAS were enumerated using the cell culture method and compared against unwashed samples on day 0 and day 6 after cleaning. The effects of UAS cleaning on leaf quality were also examined through both macroscopic and microscopic inspection, as well as measurement of the electrolyte leakage rate. Results showed that the microbial load on samples cleaned with UAS for 2 min was significantly lower on day 6 after cleaning than on those treated without ultrasound. Comparison between the cleaning effects of UAS for 40 s versus 2 min indicated that a cleaning duration of 2 min allowed sufficient time for UAS to disaggregate and detach the microbial contamination more effectively. In this case, the induction of bacteria into a viable but non-culturable state does not affect the shelf-life test results as much as it does with a 40 s clean. UAS cleaning for 2 min did not produce significant surface damage, which can affect overall leaf quality. These findings highlight the potential of UAS systems in the salad industry to improve the microbiological quality and shelf life of salads.


Assuntos
Bactérias/efeitos da radiação , Microbiologia de Alimentos , Inocuidade dos Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Saladas/microbiologia , Spinacia oleracea/microbiologia , Ondas Ultrassônicas
3.
Ultrason Sonochem ; 71: 105372, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33128950

RESUMO

The ingestion of contaminated hay is detrimental to livestock wellbeing. In this study, the feasibility of using an ultrasonically activated stream (UAS) to clean bacterial contamination from hay was investigated. Hay samples were stained with SYTO-9 nucleic acid stain for the in-situ visualization of microbes on the surface using an episcopic differential interference contrast microscope coupled with epi-fluorescence. The total microbial load per sample was calculated by measuring the mean percentage area of SYTO-9 positive staining. The cleaning efficacy was evaluated by comparing the total microbial coverage before and after cleaning. The cleaning performance between an UAS and a non UAS were compared and results have shown that an exposure of 60 s to an UAS demonstrated an 87.94 ± 2.22% removal of the bacterial contaminants, exceeding that of non UAS (21.85 ± 13.63% removal). UAS is capable of removing bacterial contaminants without the use of antimicrobial agents, therefore its cleaning mechanism can potentially prevent infection and reduce antimicrobial resistance. The cleaning mechanism of UAS can be adapted for the development of a new hay cleaning strategy for effective removal of bacterial contaminant to improve feed safety.


Assuntos
Ração Animal , Bactérias/efeitos dos fármacos , Temperatura Baixa , Descontaminação/métodos , Inocuidade dos Alimentos , Ondas Ultrassônicas , Água/farmacologia , Microbiologia de Alimentos , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...