Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(25): 9837-9853, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31144503

RESUMO

Piscidins are histidine-enriched antimicrobial peptides that interact with lipid bilayers as amphipathic α-helices. Their activity at acidic and basic pH in vivo makes them promising templates for biomedical applications. This study focuses on p1 and p3, both 22-residue-long piscidins with 68% sequence identity. They share three histidines (H3, H4, and H11), but p1, which is significantly more permeabilizing, has a fourth histidine (H17). This study investigates how variations in amphipathic character associated with histidines affect the permeabilization properties of p1 and p3. First, we show that the permeabilization ability of p3, but not p1, is strongly inhibited at pH 6.0 when the conserved histidines are partially charged and H17 is predominantly neutral. Second, our neutron diffraction measurements performed at low water content and neutral pH indicate that the average conformation of p1 is highly tilted, with its C-terminus extending into the opposite leaflet. In contrast, p3 is surface bound with its N-terminal end tilted toward the bilayer interior. The deeper membrane insertion of p1 correlates with its behavior at full hydration: an enhanced ability to tilt, bury its histidines and C-terminus, induce membrane thinning and defects, and alter membrane conductance and viscoelastic properties. Furthermore, its pH-resiliency relates to the neutral state favored by H17. Overall, these results provide mechanistic insights into how differences in the histidine content and amphipathicity of peptides can elicit different directionality of membrane insertion and pH-dependent permeabilization. This work features complementary methods, including dye leakage assays, NMR-monitored titrations, X-ray and neutron diffraction, oriented CD, molecular dynamics, electrochemical impedance spectroscopy, surface plasmon resonance, and quartz crystal microbalance with dissipation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Histidina/química , Bicamadas Lipídicas/metabolismo , Tensoativos/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Peixes , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Permeabilidade/efeitos dos fármacos , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Tensoativos/química
2.
PLoS One ; 9(12): e115082, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25521390

RESUMO

Deoxyribosyl transferases and functionally related purine nucleoside phosphorylases are used extensively for synthesis of non-natural deoxynucleosides as pharmaceuticals or standards for characterizing and quantitating DNA adducts. Hence exploring the conformational tolerance of the active sites of these enzymes is of considerable practical interest. We have determined the crystal structure at 2.1 Å resolution of Lactobacillus helveticus purine deoxyribosyl transferase (PDT) with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N2,3-ethenoguanine) at the active site. The active site electron density map was compatible with four orientations, two consistent with sites for deoxyribosylation and two appearing to be unproductive. In accord with the crystal structure, Lactobacillus helveticus PDT glycosylates the 8,9-dihydro-9-oxoimidazo[2,1-b]purine at N7 and N1, with a marked preference for N7. The activity of Lactobacillus helveticus PDT was compared with that of the nucleoside 2'-deoxyribosyltransferase enzymes (DRT Type II) from Lactobacillus leichmannii and Lactobacillus fermentum, which were somewhat more effective in the deoxyribosylation than Lactobacillus helveticus PDT, glycosylating the substrate with product profiles dependent on the pH of the incubation. The purine nucleoside phosphorylase of Escherichia coli, also commonly used in ribosylation of non-natural bases, was an order of magnitude less efficient than the transferase enzymes. Modeling based on published active-site structures as templates suggests that in all cases, an active site Phe is critical in orienting the molecular plane of the purine derivative. Adventitious hydrogen bonding with additional active site residues appears to result in presentation of multiple nucleophilic sites on the periphery of the acceptor base for ribosylation to give a distribution of nucleosides. Chemical glycosylation of O9-benzylated 8,9-dihydro-9-oxoimidazo[2,1-b]purine also resulted in N7 and N1 ribosylation. Absent from the enzymatic and chemical glycosylations is the natural pattern of N3 ribosylation, verified by comparison of spectroscopic and chromatographic properties with an authentic standard synthesized by an unambiguous route.


Assuntos
Proteínas de Escherichia coli/química , Guanina/análogos & derivados , Pentosiltransferases/química , Sequência de Aminoácidos , Domínio Catalítico , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Glicosilação , Guanina/química , Guanina/metabolismo , Lactobacillus/enzimologia , Dados de Sequência Molecular , Pentosiltransferases/metabolismo , Especificidade por Substrato
3.
Angew Chem Int Ed Engl ; 53(23): 5805-9, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24764312

RESUMO

In spite of the wide application potential of 1,2,4,5-tetrazines, particularly in live-cell and in vivo imaging, a major limitation has been the lack of practical synthetic methods. Here we report the in situ synthesis of (E)-3-substituted 6-alkenyl-1,2,4,5-tetrazine derivatives through an elimination-Heck cascade reaction. By using this strategy, we provide 24 examples of π-conjugated tetrazine derivatives that can be conveniently prepared from tetrazine building blocks and related halides. These include tetrazine analogs of biological small molecules, highly conjugated buta-1,3-diene-substituted tetrazines, and a diverse array of fluorescent probes suitable for live-cell imaging. These highly conjugated probes show very strong fluorescence turn-on (up to 400-fold) when reacted with dienophiles such as cyclopropenes and trans-cyclooctenes, and we demonstrate their application for live-cell imaging. This work provides an efficient and practical synthetic methodology for tetrazine derivatives and will facilitate the application of conjugated tetrazines, particularly as fluorogenic probes for live-cell imaging.


Assuntos
Alcenos/química , Compostos Heterocíclicos/química , Animais , Linhagem Celular Tumoral , Reação de Cicloadição , Feminino , Corantes Fluorescentes , Humanos , Masculino
4.
Chemistry ; 20(12): 3365-75, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24615990

RESUMO

Substituted cyclopropenes have recently attracted attention as stable "mini-tags" that are highly reactive dienophiles with the bioorthogonal tetrazine functional group. Despite this interest, the synthesis of stable cyclopropenes is not trivial and their reactivity patterns are poorly understood. Here, the synthesis and comparison of the reactivity of a series of 1-methyl-3-substituted cyclopropenes with different functional handles is described. The rates at which the various substituted cyclopropenes undergo Diels-Alder cycloadditions with 1,2,4,5-tetrazines were measured. Depending on the substituents, the rates of cycloadditions vary by over two orders of magnitude. The substituents also have a dramatic effect on aqueous stability. An outcome of these studies is the discovery of a novel 3-amidomethyl substituted methylcyclopropene tag that reacts twice as fast as the fastest previously disclosed 1-methyl-3-substituted cyclopropene while retaining excellent aqueous stability. Furthermore, this new cyclopropene is better suited for bioconjugation applications and this is demonstrated through using DNA templated tetrazine ligations. The effect of tetrazine structure on cyclopropene reaction rate was also studied. Surprisingly, 3-amidomethyl substituted methylcyclopropene reacts faster than trans-cyclooctenol with a sterically hindered and extremely stable tert-butyl substituted tetrazine. Density functional theory calculations and the distortion/interaction analysis of activation energies provide insights into the origins of these reactivity differences and a guide to the development of future tetrazine coupling partners. The newly disclosed cyclopropenes have kinetic and stability advantages compared to previously reported dienophiles and will be highly useful for applications in organic synthesis, bioorthogonal reactions, and materials science.


Assuntos
Ciclopropanos/síntese química , Compostos Heterocíclicos/química , Reação de Cicloadição , Ciclopropanos/química , Estrutura Molecular
5.
Curr Opin Chem Biol ; 17(5): 761-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24021760

RESUMO

There is tremendous interest in developing and refining methods to predictably perform chemical reactions within the framework of living systems. Here we review recent advances in applying tetrazine cycloadditions to live cell and in vivo chemistry. We highlight new syntheses of the tetrazine and dienophile precursors useful for in vivo studies. We briefly overview the use of this reaction in combination with unnatural amino acid technology and discuss applications involving the imaging of glycans on live cells. An emerging area is the use of tetrazine ligations for the development of in vivo imaging probes such as those used for positron emission tomography. We summarize recent applications involving tetrazine cycloadditions performed in live mice for pretargeted imaging of cancer cell biomarkers.


Assuntos
Compostos Heterocíclicos com 1 Anel/química , Animais , Produtos Biológicos/química , Sobrevivência Celular , Reação de Cicloadição , Humanos
6.
Nucleic Acids Res ; 41(15): e148, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23775794

RESUMO

Template driven chemical ligation of fluorogenic probes represents a powerful method for DNA and RNA detection and imaging. Unfortunately, previous techniques have been hampered by requiring chemistry with sluggish kinetics and background side reactions. We have developed fluorescent DNA probes containing quenched fluorophore-tetrazine and methyl-cyclopropene groups that rapidly react by bioorthogonal cycloaddition in the presence of complementary DNA or RNA templates. Ligation increases fluorescence with negligible background signal in the absence of hybridization template. Reaction kinetics depend heavily on template length and linker structure. Using this technique, we demonstrate rapid discrimination between single template mismatches both in buffer and cell media. Fluorogenic bioorthogonal ligations offer a promising route towards the fast and robust fluorescent detection of specific DNA or RNA sequences.


Assuntos
Reação de Cicloadição , Ciclopropanos/química , Corantes Fluorescentes/química , Hibridização de Ácido Nucleico/métodos , Sequência de Bases , Meios de Cultura/química , Ciclopropanos/síntese química , Fluorescência , Células HeLa , Humanos , Sondas de Oligonucleotídeos/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos
7.
Chembiochem ; 14(2): 205-208, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23292753

RESUMO

Sugar coated: We recently developed methylcyclopropenes as low-molecular-weight tetrazine coupling partners. Here, we demonstrate that methylcyclopropenes can meet the stringent steric demands required for metabolic imaging of unnatural mannosamines on live cells. Using sequential azide-alkyne chemistry, we also demonstrate multicolor imaging of two different metabolically incorporated unnatural sugars.


Assuntos
Ciclopropanos/química , Corantes Fluorescentes/química , Hexosaminas/análise , Alcinos/química , Azidas/química , Linhagem Celular , Sobrevivência Celular , Química Click , Reação de Cicloadição , Humanos , Microscopia Confocal
9.
Protein Sci ; 20(11): 1836-44, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21898642

RESUMO

Aminopropyltransferases are essential enzymes that form polyamines in eukaryotic and most prokaryotic cells. Spermidine synthase (SpdS) is one of the most well-studied enzymes in this biosynthetic pathway. The enzyme uses decarboxylated S-adenosylmethionine and a short-chain polyamine (putrescine) to make a medium-chain polyamine (spermidine) and 5'-deoxy-5'-methylthioadenosine as a byproduct. Here, we report a new spermidine synthase inhibitor, decarboxylated S-adenosylhomocysteine (dcSAH). The inhibitor was synthesized, and dose-dependent inhibition of human, Thermatoga maritima, and Plasmodium falciparum spermidine synthases, as well as functionally homologous human spermine synthase, was determined. The human SpdS/dcSAH complex structure was determined by X-ray crystallography at 2.0 Å resolution and showed consistent active site positioning and coordination with previously known structures. Isothermal calorimetry binding assays confirmed inhibitor binding to human SpdS with K(d) of 1.1 ± 0.3 µM in the absence of putrescine and 3.2 ± 0.1 µM in the presence of putrescine. These results indicate a potential for further inhibitor development based on the dcSAH scaffold.


Assuntos
Inibidores Enzimáticos/metabolismo , S-Adenosil-Homocisteína/análogos & derivados , S-Adenosil-Homocisteína/metabolismo , Espermidina Sintase/antagonistas & inibidores , Espermidina Sintase/metabolismo , Espermidina/biossíntese , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Descarboxilação , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Plasmodium falciparum/enzimologia , Ligação Proteica , Estrutura Terciária de Proteína , Putrescina/metabolismo , S-Adenosil-Homocisteína/síntese química , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/farmacologia , Espermidina/metabolismo , Espermidina Sintase/química , Thermotoga maritima/enzimologia
10.
Proc Natl Acad Sci U S A ; 106(21): 8543-8, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19423671

RESUMO

Pathogenic bacteria have developed extraordinary strategies for invading host cells. The highly conserved type III secretion system (T3SS) provides a regulated conduit between the bacterial and host cytoplasm for delivery of a specific set of bacterial effector proteins that serve to disrupt host signaling and metabolism for the benefit of the bacterium. Remarkably, the inner diameter of the T3SS apparatus requires that effector proteins pass through in at least a partially unfolded form. AvrPto, an effector protein of the plant pathogen Pseudomonas syringae, adopts a helical bundle fold of low stability (DeltaG(F-->U) = 2 kcal/mol at pH 7, 26.6 degrees C) and offers a model system for chaperone-independent secretion. P. syringae effector proteins encounter a pH gradient as they translocate from the bacterial cytoplasm (mildly acidic) into the host cell (neutral). Here, we demonstrate that AvrPto possesses a pH-sensitive folding switch controlled by conserved residue H87 that operates precisely in the pH range expected between the bacterial and host cytoplasm environments. These results provide a mechanism for how a bacterial effector protein employs an intrinsic pH sensor to unfold for translocation via the T3SS and refold once in the host cytoplasm and provide fundamental insights for developing strategies for delivery of engineered therapeutic proteins to target tissues.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dobramento de Proteína , Pseudomonas syringae/química , Pseudomonas syringae/metabolismo , Ácidos , Proteínas de Bactérias/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Estrutura Terciária de Proteína , Pseudomonas syringae/genética , Temperatura , Titulometria
11.
J Org Chem ; 70(22): 8649-60, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16238293

RESUMO

[reaction: see text] Potential energy surfaces for the alkaline hydrolysis of sarin and O,S-dimethyl methylphosphonothiolate, a VX model compound, and the perhydrolysis of the latter have been computed at the MP2/6-31+G(d)//mPW1K/MIDI! level of theory. The effect of aqueous solvation was accounted for via the integral equation formalism polarizable continuum model (IEF-PCM) at the HF/6-31+G(d) level. Excellent agreement with the experimental enthalpy of activation for alkaline hydrolysis of sarin was found. For the alkaline hydrolysis of O,S-dimethyl methylphosphonothiolate, it was found that the P-O and P-S bond cleavage processes are kinetically competitive but that the products of P-S bond cleavage are thermodynamically favored. For the perhydrolysis of O,S-dimethyl methylphosphonothiolate, it was found that P-O bond cleavage is not kinetically competitive with P-S bond cleavage. In both cases, the data support initial formation of trigonal bipyramidal intermediates and demonstrate kinetic selectivity for nucleophilic attack on the face opposite the more apicophilic methoxide ligand.


Assuntos
Compostos Organotiofosforados/química , Sarina/química , Álcalis , Biologia Computacional , Hidrólise , Hidróxidos/química , Modelos Moleculares , Conformação Molecular , Oxirredução , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...