Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(22): eadl5576, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820163

RESUMO

Despite great progress in the field, chronic Pseudomonas aeruginosa (Pa) infections remain a major cause of mortality in patients with cystic fibrosis (pwCF), necessitating treatment with antibiotics. Pf is a filamentous bacteriophage produced by Pa and acts as a structural element in Pa biofilms. Pf presence has been associated with antibiotic resistance and poor outcomes in pwCF, although the underlying mechanisms are unclear. We have investigated how Pf and sputum biopolymers impede antibiotic diffusion using pwCF sputum and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf in sputum reduces the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Escarro , Eletricidade Estática , Escarro/microbiologia , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/virologia , Humanos , Fibrose Cística/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Tobramicina/farmacologia , Difusão , Biofilmes/efeitos dos fármacos , Bacteriófagos
2.
PLoS Pathog ; 20(4): e1012122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558079

RESUMO

Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferential packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.


Assuntos
Bacteriófagos , Borrelia burgdorferi , Doença de Lyme , Humanos , Borrelia burgdorferi/genética , Bacteriófagos/genética , Plasmídeos/genética , Doença de Lyme/genética , Genômica , DNA
3.
NAR Genom Bioinform ; 6(2): lqae030, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584872

RESUMO

Bacteriophages are viruses that infect bacteria. Many bacteriophages integrate their genomes into the bacterial chromosome and become prophages. Prophages may substantially burden or benefit host bacteria fitness, acting in some cases as parasites and in others as mutualists. Some prophages have been demonstrated to increase host virulence. The increasing ease of bacterial genome sequencing provides an opportunity to deeply explore prophage prevalence and insertion sites. Here we present VIBES (Viral Integrations in Bacterial genomES), a workflow intended to automate prophage annotation in complete bacterial genome sequences. VIBES provides additional context to prophage annotations by annotating bacterial genes and viral proteins in user-provided bacterial and viral genomes. The VIBES pipeline is implemented as a Nextflow-driven workflow, providing a simple, unified interface for execution on local, cluster and cloud computing environments. For each step of the pipeline, a container including all necessary software dependencies is provided. VIBES produces results in simple tab-separated format and generates intuitive and interactive visualizations for data exploration. Despite VIBES's primary emphasis on prophage annotation, its generic alignment-based design allows it to be deployed as a general-purpose sequence similarity search manager. We demonstrate the utility of the VIBES prophage annotation workflow by searching for 178 Pf phage genomes across 1072 Pseudomonas spp. genomes.

4.
J Bacteriol ; 206(5): e0040223, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38687034

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous virulence phenotypes. Most work on Pf phages has focused on Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf phages infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. The pflM gene shows diversity among different Pf phage isolates; however, all examined pflM alleles encode the DUF5447 domain. We demonstrate that pflM deletion results in prophage excision but not replication, leading to total prophage loss, indicating a role for lysis/lysogeny decisions for the DUF5447 domain. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, pigment production, and virulence against the bacterivorous nematode Caenorhabditis elegans. We find that Pf phages have strain-specific impacts on quorum sensing and biofilm formation, but nearly all suppress pigment production and increase C. elegans avoidance behavior. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.IMPORTANCEPseudomonas aeruginosa is an opportunistic bacterial pathogen that is frequently infected by filamentous Pf phages (viruses) that integrate into its chromosome, affecting behavior. Although prior work has focused on Pf4 and PAO1, this study investigates diverse Pf in clinical isolates. A simple method targeting the deletion of the Pf lysogeny maintenance gene pflM (PA0718) effectively eliminates Pf prophages from clinical isolates. The research evaluates the impact Pf prophages have on bacterial quorum sensing, biofilm formation, and virulence phenotypes. This work introduces a valuable tool to eliminate Pf prophages from clinical isolates and advances our understanding of P. aeruginosa and filamentous Pf phage interactions.


Assuntos
Prófagos , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/virologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Prófagos/genética , Prófagos/fisiologia , Virulência , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/virologia , Biofilmes/crescimento & desenvolvimento , Animais , Lisogenia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/fisiologia , Infecções por Pseudomonas/microbiologia
5.
bioRxiv ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38496625

RESUMO

Despite great progress in the field, chronic Pseudomonas aeruginosa (Pa) infections remain a major cause of morbidity and mortality in patients with cystic fibrosis, necessitating treatment with inhaled antibiotics. Pf phage is a filamentous bacteriophage produced by Pa that has been reported to act as a structural element in Pa biofilms. Pf presence has been associated with resistance to antibiotics and poor outcomes in cystic fibrosis, though the underlying mechanisms are unclear. Here, we have investigated how Pf phages and sputum biopolymers impede antibiotic diffusion using human sputum samples and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf phages and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf phages in sputum reduce the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf phages and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches.

6.
Vaccines (Basel) ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400099

RESUMO

Pseudomonas aeruginosa (Pa), a WHO priority 1 pathogen, resulted in approximately 559,000 deaths globally in 2019. Pa has a multitude of host-immune evasion strategies that enhance Pa virulence. Most clinical isolates of Pa are infected by a phage called Pf that has the ability to misdirect the host-immune response and provide structural integrity to biofilms. Previous studies demonstrate that vaccination against the coat protein (CoaB) of Pf4 virions can assist in the clearance of Pa from the dorsal wound model in mice. Here, a consensus peptide was derived from CoaB and conjugated to cross-reacting material 197 (CRM197). This conjugate was adjuvanted with a novel synthetic Toll-like receptor agonist (TLR) 4 agonist, INI-2002, and used to vaccinate mice. Mice vaccinated with CoaB-CRM conjugate and INI-2002 developed high anti-CoaB peptide-specific IgG antibody titers. Direct binding of the peptide-specific antibodies to whole-phage virus particles was demonstrated by ELISA. Furthermore, a functional assay demonstrated that antibodies generated from vaccinated mice disrupted the replicative cycle of Pf phages. The use of an adjuvanted phage vaccine targeting Pa is an innovative vaccine strategy with the potential to become a new tool targeting multi-drug-resistant Pa infections in high-risk populations.

7.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260690

RESUMO

Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferentially packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.

8.
Mol Microbiol ; 121(1): 116-128, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038061

RESUMO

Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.


Assuntos
Bacteriófagos , Pseudomonas aeruginosa , Quinolonas , Pseudomonas aeruginosa/genética , Bacteriófagos/metabolismo , Transdução de Sinais , Percepção de Quorum/genética , Replicação Viral , Proteínas de Bactérias/metabolismo
9.
bioRxiv ; 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38014273

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous bacterial virulence phenotypes. Most work on Pf phages has focused on strain Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf strains infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, virulence factor production, and virulence. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates, but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.

10.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905003

RESUMO

Bacteriophages are viruses that infect bacteria. Many bacteriophages integrate their genomes into the bacterial chromosome and become prophages. Prophages may substantially burden or benefit host bacteria fitness, acting in some cases as parasites and in others as mutualists, and have been demonstrated to increase host virulence. The increasing ease of bacterial genome sequencing provides an opportunity to deeply explore prophage prevalence and insertion sites. Here we present VIBES, a workflow intended to automate prophage annotation in complete bacterial genome sequences. VIBES provides additional context to prophage annotations by annotating bacterial genes and viral proteins in user-provided bacterial and viral genomes. The VIBES pipeline is implemented as a Nextflow-driven workflow, providing a simple, unified interface for execution on local, cluster, and cloud computing environments. For each step of the pipeline, a container including all necessary software dependencies is provided. VIBES produces results in simple tab separated format and generates intuitive and interactive visualizations for data exploration. Despite VIBES' primary emphasis on prophage annotation, its generic alignment-based design allows it to be deployed as a general-purpose sequence similarity search manager. We demonstrate the utility of the VIBES prophage annotation workflow by searching for 178 Pf phage genomes across 1,072 Pseudomonas spp. genomes. VIBES software is available at https://github.com/TravisWheelerLab/VIBES.

11.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662248

RESUMO

Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.

12.
Elife ; 122023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449477

RESUMO

Borrelia burgdorferi (Bb), the causative agent of Lyme disease, adapts to vastly different environments as it cycles between tick vector and vertebrate host. During a tick bloodmeal, Bb alters its gene expression to prepare for vertebrate infection; however, the full range of transcriptional changes that occur over several days inside of the tick are technically challenging to capture. We developed an experimental approach to enrich Bb cells to longitudinally define their global transcriptomic landscape inside nymphal Ixodes scapularis ticks during a transmitting bloodmeal. We identified 192 Bb genes that substantially change expression over the course of the bloodmeal from 1 to 4 days after host attachment. The majority of upregulated genes encode proteins found at the cell envelope or proteins of unknown function, including 45 outer surface lipoproteins embedded in the unusual protein-rich coat of Bb. As these proteins may facilitate Bb interactions with the host, we utilized mass spectrometry to identify candidate tick proteins that physically associate with Bb. The Bb enrichment methodology along with the ex vivo Bb transcriptomes and candidate tick interacting proteins presented here provide a resource to facilitate investigations into key determinants of Bb priming and transmission during the tick stage of its unique transmission cycle.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Borrelia burgdorferi/genética , Transcriptoma , Proteínas de Artrópodes
13.
Proc Natl Acad Sci U S A ; 120(9): e2216430120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802441

RESUMO

Monitoring the extracellular environment for danger signals is a critical aspect of cellular survival. However, the danger signals released by dying bacteria and the mechanisms bacteria use for threat assessment remain largely unexplored. Here, we show that lysis of Pseudomonas aeruginosa cells releases polyamines that are subsequently taken up by surviving cells via a mechanism that relies on Gac/Rsm signaling. While intracellular polyamines spike in surviving cells, the duration of this spike varies according to the infection status of the cell. In bacteriophage-infected cells, intracellular polyamines are maintained at high levels, which inhibits replication of the bacteriophage genome. Many bacteriophages package linear DNA genomes and linear DNA is sufficient to trigger intracellular polyamine accumulation, suggesting that linear DNA is sensed as a second danger signal. Collectively, these results demonstrate how polyamines released by dying cells together with linear DNA allow P. aeruginosa to make threat assessments of cellular injury.


Assuntos
Bacteriófagos , Poliaminas , Bacteriófagos/genética , Bactérias , Pseudomonas aeruginosa , DNA
14.
PLoS Pathog ; 19(2): e1010925, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36800381

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa PAO1 is infected by the filamentous bacteriophage Pf4. Pf4 virions promote biofilm formation, protect bacteria from antibiotics, and modulate animal immune responses in ways that promote infection. Furthermore, strains cured of their Pf4 infection (ΔPf4) are less virulent in animal models of infection. Consistently, we find that strain ΔPf4 is less virulent in a Caenorhabditis elegans nematode infection model. However, our data indicate that PQS quorum sensing is activated and production of the pigment pyocyanin, a potent virulence factor, is enhanced in strain ΔPf4. The reduced virulence of ΔPf4 despite high levels of pyocyanin production may be explained by our finding that C. elegans mutants unable to sense bacterial pigments through the aryl hydrocarbon receptor are more susceptible to ΔPf4 infection compared to wild-type C. elegans. Collectively, our data support a model where suppression of quorum-regulated virulence factors by Pf4 allows P. aeruginosa to evade detection by innate host immune responses.


Assuntos
Inovirus , Fagos de Pseudomonas , Animais , Pseudomonas aeruginosa , Caenorhabditis elegans/microbiologia , Piocianina , Percepção de Quorum , Fatores de Virulência , Biofilmes , Antibacterianos/farmacologia , Proteínas de Bactérias
15.
Nat Commun ; 14(1): 198, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639656

RESUMO

The alternative sigma factor RpoS plays a central role in the critical host-adaptive response of the Lyme disease spirochete, Borrelia burgdorferi. We previously identified bbd18 as a negative regulator of RpoS but could not inactivate bbd18 in wild-type spirochetes. In the current study we employed an inducible bbd18 gene to demonstrate the essential nature of BBD18 for viability of wild-type spirochetes in vitro and at a unique point in vivo. Transcriptomic analyses of BBD18-depleted cells demonstrated global induction of RpoS-dependent genes prior to lysis, with the absolute requirement for BBD18, both in vitro and in vivo, circumvented by deletion of rpoS. The increased expression of plasmid prophage genes and the presence of phage particles in the supernatants of lysing cultures indicate that RpoS regulates phage lysis-lysogeny decisions. Through this work we identify a mechanistic link between endogenous prophages and the RpoS-dependent adaptive response of the Lyme disease spirochete.


Assuntos
Borrelia burgdorferi , Prófagos , Carrapatos , Animais , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/virologia , Regulação Bacteriana da Expressão Gênica , Prófagos/genética , Fator sigma/metabolismo , Carrapatos/microbiologia , Fatores de Virulência/metabolismo , Interações Hospedeiro-Patógeno
16.
Cell Host Microbe ; 31(1): 3-5, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36634621

RESUMO

Phage-inducible chromosomal islands (PICIs) steal structural proteins from helper phages. In two related studies, Penadés and coworkers reveal that PICIs are not parasites but mutualists. Some PICIs mobilize defense systems that restrict niche competitors, while other PICIs encode their own capsids and steal helper phage tails without affecting their fitness.


Assuntos
Bacteriófagos , Ilhas Genômicas , Bacteriófagos/genética , Capsídeo
17.
Front Cell Infect Microbiol ; 12: 869736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782109

RESUMO

Bacteria in natural environments and infections are often found in cell aggregates suspended in polymer-rich solutions, and aggregation can promote bacterial survival and stress resistance. One aggregation mechanism, called depletion aggregation, is driven by physical forces between bacteria and high concentrations of polymers in the environment rather than bacterial activity per se. As such, bacteria aggregated by the depletion mechanism will disperse when polymer concentrations fall unless other adhesion mechanisms supervene. Here we investigated whether the depletion mechanism can actuate the aggregating effects of Pseudomonas aeruginosa exopolysaccharides for suspended (i.e. not surface attached) bacteria, and how depletion affects bacterial inter-species interactions. We found that cells overexpressing the exopolysaccharides Pel and Psl remained aggregated after short periods of depletion aggregation whereas wild-type and mucoid P. aeruginosa did not. In co-culture, depletion aggregation had contrasting effects on P. aeruginosa's interactions with coccus- and rod-shaped bacteria. Depletion caused S. aureus (cocci) and P. aeruginosa (rods) to segregate from each other and S. aureus to resist secreted P. aeruginosa antimicrobial factors resulting in species co-existence. In contrast, depletion aggregation caused P. aeruginosa and Burkholderia sp. (both rods) to intermix, enhancing type VI secretion inhibition of Burkholderia by P. aeruginosa, leading to P. aeruginosa dominance. These results show that in addition to being a primary cause of aggregation in polymer-rich suspensions, physical forces inherent to the depletion mechanism can promote aggregation by some self-produced exopolysaccharides and determine species distribution and composition of bacterial communities.


Assuntos
Biofilmes , Staphylococcus aureus , Antibacterianos/farmacologia , Polímeros/metabolismo , Polímeros/farmacologia , Pseudomonas aeruginosa , Staphylococcus aureus/metabolismo
18.
Cell Rep Med ; 3(6): 100656, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732145

RESUMO

Chronic wounds infected by Pseudomonas aeruginosa (Pa) are characterized by disease progression and increased mortality. We reveal Pf, a bacteriophage produced by Pa that delays healing of chronically infected wounds in human subjects and animal models of disease. Interestingly, impairment of wound closure by Pf is independent of its effects on Pa pathogenesis. Rather, Pf impedes keratinocyte migration, which is essential for wound healing, through direct inhibition of CXCL1 signaling. In support of these findings, a prospective cohort study of 36 human patients with chronic Pa wound infections reveals that wounds infected with Pf-positive strains of Pa are more likely to progress in size compared with wounds infected with Pf-negative strains. Together, these data implicate Pf phage in the delayed wound healing associated with Pa infection through direct manipulation of mammalian cells. These findings suggest Pf may have potential as a biomarker and therapeutic target in chronic wounds.


Assuntos
Inovirus , Infecções por Pseudomonas , Infecção dos Ferimentos , Animais , Biofilmes , Humanos , Mamíferos , Estudos Prospectivos , Pseudomonas , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa , Cicatrização , Infecção dos Ferimentos/terapia
19.
Microbiol Resour Announc ; 11(7): e0023922, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638894

RESUMO

vB_PaeP_CMS1 is a lytic bacteriophage that infects Pseudomonas aeruginosa. Whole-genome sequencing revealed that vB_PaeP_CMS1 has a linear double-stranded DNA (dsDNA) genome composed of 72,673 bp, with a GC content of 54.9%, that harbors 92 predicted open reading frames, with the greatest genome homology to members of the family Podoviridae, genus Litunavirus.

20.
PLoS One ; 17(4): e0261482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35404965

RESUMO

Filamentous molecules tend to spontaneously assemble into liquid crystalline droplets with a tactoid morphology in environments with high concentration on non-adsorbing molecules. Tactoids of filamentous Pf bacteriophage, such as those produced by Pseudomonas aeruginosa, have been linked to increased antibiotic tolerance. We modelled this system and show that tactoids composed of filamentous Pf virions can lead to antibiotic tolerance by acting as an adsorptive diffusion barrier. The continuum model, reminiscent of descriptions of reactive diffusion in porous media, has been solved numerically and good agreement was found with the analytical results, obtained using a homogenisation approach. We find that the formation of tactoids significantly increases antibiotic diffusion times which may lead to stronger antibiotic resistance.


Assuntos
Inovirus , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Tolerância a Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...