Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684364

RESUMO

Spinal cerebrospinal fluid-contacting neurons (CSF-cNs) form an evolutionary conserved bipolar cell population localized around the central canal of all vertebrates. CSF-cNs were shown to express molecular markers of neuronal immaturity into adulthood; however, the impact of their incomplete maturation on the chloride (Cl-) homeostasis as well as GABAergic signaling remains unknown. Using adult mice from both sexes, in situ hybridization revealed that a proportion of spinal CSF-cNs (18.3%) express the Na+-K+-Cl- cotransporter 1 (NKCC1) allowing intracellular Cl- accumulation. However, we did not find expression of the K+-Cl- cotransporter 2 (KCC2) responsible for Cl- efflux in any CSF-cNs. The lack of KCC2 expression results in low Cl- extrusion capacity in CSF-cNs under high Cl- load in whole-cell patch clamp. Using cell-attached patch clamp allowing recordings with intact intracellular Cl- concentration, we found that the activation of ionotropic GABAA receptors (GABAA-Rs) induced both depolarizing and hyperpolarizing responses in CSF-cNs. Moreover, depolarizing GABA responses can drive action potentials as well as intracellular calcium elevations by activating voltage-gated calcium channels. Blocking NKCC1 with bumetanide inhibited the GABA-induced calcium transients in CSF-cNs. Finally, we show that metabotropic GABAB receptors have no hyperpolarizing action on spinal CSF-cNs as their activation with baclofen did not mediate outward K+ currents, presumably due to the lack of expression of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Together, these findings outline subpopulations of spinal CSF-cNs expressing inhibitory or excitatory GABAA-R signaling. Excitatory GABA may promote the maturation and integration of young CSF-cNs into the existing spinal circuit.


Assuntos
Membro 2 da Família 12 de Carreador de Soluto , Medula Espinal , Simportadores , Animais , Camundongos , Medula Espinal/metabolismo , Feminino , Masculino , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/metabolismo , Cotransportadores de K e Cl- , Transdução de Sinais/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/fisiologia , Camundongos Endogâmicos C57BL , Receptores de GABA-A/metabolismo , Cloretos/metabolismo , Cloretos/líquido cefalorraquidiano , Cloretos/farmacologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia
2.
J Physiol ; 597(2): 631-651, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418666

RESUMO

KEY POINTS: Medullo-spinal CSF contacting neurones (CSF-cNs) located around the central canal are conserved in all vertebrates and suggested to be a novel sensory system intrinsic to the CNS. CSF-cNs receive GABAergic inhibitory synaptic inputs involving ionotropic GABAA receptors, but the contribution of metabotropic GABAB receptors (GABAB -Rs) has not yet been studied. Here, we indicate that CSF-cNs express functional GABAB -Rs that inhibit postsynaptic calcium channels but fail to activate inhibitory potassium channel of the Kir3-type. We further show that GABAB -Rs localise presynaptically on GABAergic and glutamatergic synaptic inputs contacting CSF-cNs, where they inhibit the release of GABA and glutamate. Our data are the first to address the function of GABAB -Rs in CSF-cNs and show that on the presynaptic side they exert a classical synaptic modulation whereas at the postsynaptic level they have an atypical action by modulating calcium signalling without inducing potassium-dependent inhibition. ABSTRACT: Medullo-spinal neurones that contact the cerebrospinal fluid (CSF-cNs) are a population of evolutionary conserved cells located around the central canal. CSF-cN activity has been shown to be regulated by inhibitory synaptic inputs involving ionotropic GABAA receptors, but the contribution of the G-protein coupled GABAB receptors has not yet been studied. Here, we used a combination of immunofluorescence, electrophysiology and calcium imaging to investigate the expression and function of GABAB -Rs in CSF-cNs of the mouse brainstem. We found that CSF-cNs express GABAB -Rs, but their selective activation failed to induce G protein-coupled inwardly rectifying potassium (GIRK) currents. Instead, CSF-cNs express primarily N-type voltage-gated calcium (CaV 2.2) channels, and GABAB -Rs recruit Gßγ subunits to inhibit CaV channel activity induced by membrane voltage steps or under physiological conditions by action potentials. Moreover, using electrical stimulation, we indicate that GABAergic inhibitory (IPSCs) and excitatory glutamatergic (EPSCs) synaptic currents can be evoked in CSF-cNs showing that mammalian CSF-cNs are also under excitatory control by glutamatergic synaptic inputs. We further demonstrate that baclofen reversibly reduced the amplitudes of both IPSCs and EPSCs evoked in CSF-cNs through a presynaptic mechanism of regulation. In summary, these results are the first to demonstrate the existence of functional postsynaptic GABAB -Rs in medullar CSF-cNs, as well as presynaptic GABAB auto- and heteroreceptors regulating the release of GABA and glutamate. Remarkably, postsynaptic GABAB -Rs associate with CaV but not GIRK channels, indicating that GABAB -Rs function as a calcium signalling modulator without GIRK-dependent inhibition in CSF-cNs.


Assuntos
Tronco Encefálico/fisiologia , Cálcio/fisiologia , Líquido Cefalorraquidiano/fisiologia , Receptores de GABA-B/fisiologia , Animais , Canais de Cálcio Tipo N/fisiologia , Feminino , Proteínas de Ligação ao GTP/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Canais de Potássio/fisiologia
3.
J Neurosci ; 37(5): 1162-1175, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003345

RESUMO

GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, GABA. GABAB receptors were shown to associate with homo-oligomers of auxiliary KCTD8, KCTD12, KCTD12b, and KCTD16 subunits (named after their T1 K+-channel tetramerization domain) that regulate G-protein signaling of the receptor. Here we provide evidence that GABAB receptors also associate with hetero-oligomers of KCTD subunits. Coimmunoprecipitation experiments indicate that two-thirds of the KCTD16 proteins in the hippocampus of adult mice associate with KCTD12. We show that the KCTD proteins hetero-oligomerize through self-interacting T1 and H1 homology domains. Bioluminescence resonance energy transfer measurements in live cells reveal that KCTD12/KCTD16 hetero-oligomers associate with both the receptor and the G-protein. Electrophysiological experiments demonstrate that KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties on G-protein-activated Kir3 currents. During prolonged receptor activation (one min) KCTD12/KCTD16 hetero-oligomers produce moderately desensitizing fast deactivating K+ currents, whereas KCTD12 and KCTD16 homo-oligomers produce strongly desensitizing fast deactivating currents and nondesensitizing slowly deactivating currents, respectively. During short activation (2 s) KCTD12/KCTD16 hetero-oligomers produce nondesensitizing slowly deactivating currents. Electrophysiological recordings from hippocampal neurons of KCTD knock-out mice are consistent with these findings and indicate that KCTD12/KCTD16 hetero-oligomers increase the duration of slow IPSCs. In summary, our data demonstrate that simultaneous assembly of distinct KCTDs at the receptor increases the molecular and functional repertoire of native GABAB receptors and modulates physiologically induced K+ current responses in the hippocampus. SIGNIFICANCE STATEMENT: The KCTD proteins 8, 12, and 16 are auxiliary subunits of GABAB receptors that differentially regulate G-protein signaling of the receptor. The KCTD proteins are generally assumed to function as homo-oligomers. Here we show that the KCTD proteins also assemble hetero-oligomers in all possible dual combinations. Experiments in live cells demonstrate that KCTD hetero-oligomers form at least tetramers and that these tetramers directly interact with the receptor and the G-protein. KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties to GABAB receptor-induced Kir3 currents in heterologous cells. KCTD12/KCTD16 hetero-oligomers are abundant in the hippocampus, where they prolong the duration of slow IPSCs in pyramidal cells. Our data therefore support that KCTD hetero-oligomers modulate physiologically induced K+ current responses in the brain.


Assuntos
Canais de Potássio/genética , Canais de Potássio/metabolismo , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Animais , Química Encefálica/genética , Células CHO , Cricetinae , Cricetulus , Fenômenos Eletrofisiológicos/genética , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Cinética , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Receptores Acoplados a Proteínas G/metabolismo , Receptores KIR/metabolismo
4.
Neuropharmacology ; 101: 549-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26220314

RESUMO

Cerebrospinal fluid contacting neurons (CSF-cNs) are found around the central canal of all vertebrates. They present a typical morphology, with a single dendrite that projects into the cavity and ends in the CSF with a protuberance. These anatomical features have led to the suggestion that CSF-cNs might have sensory functions, either by sensing CSF movement or composition, but the physiological mechanisms for any such role are unknown. This hypothesis was recently supported by the demonstration that in several vertebrate species medullo-spinal CSF-cNs selectively express Polycystic Kidney Disease 2-Like 1 proteins (PKD2L1). PKD2L1 are members of the 'transient receptor potential (TRP)' superfamily, form non-selective cationic channels of high conductance, are regulated by various stimuli including protons and are therefore suggested to act as sensory receptors. Using patch-clamp whole-cell recordings of CSF-cNs in brainstem slices obtained from wild type and mutant PKD2L1 mice, we demonstrate that spontaneously active unitary currents in CSF-cNs are due to PKD2L1 channels that are capable, with a single opening, of triggering action potentials. Thus PKD2L1 might contribute to the setting of CSF-cN spiking activity. We also reveal that CSF-cNs have the capacity of discriminating between alkalinization and acidification following activation of specific conductances (PKD2L1 vs. ASIC) generating specific responses. Altogether, this study reinforces the idea that CSF-cNs represent sensory neurons intrinsic to the central nervous system and suggests a role for PKD2L1 channels as spike generators.


Assuntos
Potenciais de Ação/fisiologia , Tronco Encefálico/citologia , Canais de Cálcio/metabolismo , Líquido Cefalorraquidiano/citologia , Neurônios/fisiologia , Receptores de Superfície Celular/metabolismo , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Canais de Cálcio/genética , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Glicinérgicos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Piridazinas/farmacologia , Receptores de Superfície Celular/genética , Estricnina/farmacologia
5.
J Biol Chem ; 288(34): 24848-56, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23843457

RESUMO

GABA(B) receptors are the G-protein coupled receptors (GPCRs) for GABA, the main inhibitory neurotransmitter in the central nervous system. Native GABA(B) receptors comprise principle and auxiliary subunits that regulate receptor properties in distinct ways. The principle subunits GABA(B1a), GABA(B1b), and GABA(B2) form fully functional heteromeric GABA(B(1a,2)) and GABA(B(1b,2)) receptors. Principal subunits regulate forward trafficking of the receptors from the endoplasmic reticulum to the plasma membrane and control receptor distribution to axons and dendrites. The auxiliary subunits KCTD8, -12, -12b, and -16 are cytosolic proteins that influence agonist potency and G-protein signaling of GABA(B(1a,2)) and GABA(B(1b,2)) receptors. Here, we used transfected cells to study assembly, surface trafficking, and internalization of GABA(B) receptors in the presence of the KCTD12 subunit. Using bimolecular fluorescence complementation and metabolic labeling, we show that GABA(B) receptors associate with KCTD12 while they reside in the endoplasmic reticulum. Glycosylation experiments support that association with KCTD12 does not influence maturation of the receptor complex. Immunoprecipitation and bioluminescence resonance energy transfer experiments demonstrate that KCTD12 remains associated with the receptor during receptor activity and receptor internalization from the cell surface. We further show that KCTD12 reduces constitutive receptor internalization and thereby increases the magnitude of receptor signaling at the cell surface. Accordingly, knock-out or knockdown of KCTD12 in cultured hippocampal neurons reduces the magnitude of the GABA(B) receptor-mediated K(+) current response. In summary, our experiments support that the up-regulation of functional GABA(B) receptors at the neuronal plasma membrane is an additional physiological role of the auxiliary subunit KCTD12.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Multimerização Proteica/fisiologia , Receptores de GABA-B/metabolismo , Transdução de Sinais/fisiologia , Animais , Células COS , Membrana Celular/genética , Membrana Celular/metabolismo , Chlorocebus aethiops , Hipocampo/citologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Canais de Potássio/genética , Receptores de GABA-B/genética
6.
J Biol Chem ; 287(47): 39869-77, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23035119

RESUMO

GABA(B) receptors assemble from principle and auxiliary subunits. The principle subunits GABA(B1) and GABA(B2) form functional heteromeric GABA(B(1,2)) receptors that associate with homotetramers of auxiliary KCTD8, -12, -12b, or -16 (named after their K(+) channel tetramerization domain) subunits. These auxiliary subunits constitute receptor subtypes with distinct functional properties. KCTD12 and -12b generate desensitizing receptor responses while KCTD8 and -16 generate largely non-desensitizing receptor responses. The structural elements of the KCTDs underlying these differences in desensitization are unknown. KCTDs are modular proteins comprising a T1 tetramerization domain, which binds to GABA(B2), and a H1 homology domain. KCTD8 and -16 contain an additional C-terminal H2 homology domain that is not sequence-related to the H1 domains. No functions are known for the H1 and H2 domains. Here we addressed which domains and sequence motifs in KCTD proteins regulate desensitization of the receptor response. We found that the H1 domains in KCTD12 and -12b mediate desensitization through a particular sequence motif, T/NFLEQ, which is not present in the H1 domains of KCTD8 and -16. In addition, the H2 domains in KCTD8 and -16 inhibit desensitization when expressed C-terminal to the H1 domains but not when expressed as a separate protein in trans. Intriguingly, the inhibitory effect of the H2 domain is sequence-independent, suggesting that the H2 domain sterically hinders desensitization by the H1 domain. Evolutionary analysis supports that KCTD12 and -12b evolved desensitizing properties by liberating their H1 domains from antagonistic H2 domains and acquisition of the T/NFLEQ motif.


Assuntos
Evolução Molecular , Subunidades Proteicas/metabolismo , Proteínas/metabolismo , Receptores de GABA-B/metabolismo , Motivos de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Proteínas/genética , Receptores de GABA-B/genética
7.
Adv Pharmacol ; 58: 231-55, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20655485

RESUMO

GABA(B) receptors are the G-protein-coupled receptors (GPCRs) for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the central nervous system. GABA(B) receptors are implicated in the etiology of a variety of psychiatric disorders and are considered attractive drug targets. With the cloning of GABA(B) receptor subunits 13 years ago, substantial progress was made in the understanding of the molecular structure, physiology, and pharmacology of these receptors. However, it remained puzzling that native studies demonstrated a heterogeneity of GABA(B) responses that contrasted with a very limited diversity of cloned GABA(B) receptor subunits. Until recently, the only firmly established molecular diversity consisted of two GABA(B1) subunit isoforms, GABA(B1a) and GABA(B1b), which assemble with GABA(B2) subunits to generate heterodimeric GABA(B(1a,2)) and GABA(B(1b,2)) receptors. Using genetic, ultrastructural, biochemical, and electrophysiological approaches, it has been possible to identify functional properties that segregate with these two receptors. Moreover, receptor modifications and factors that can alter the receptor response have been identified. Most importantly, recent data reveal the existence of a family of auxiliary GABA(B) receptor subunits that assemble as tetramers with the C-terminal domain of GABA(B2) subunits and drastically alter pharmacology and kinetics of the receptor response. The data are most consistent with native GABA(B) receptors minimally forming dimeric assemblies of units composed of GABA(B1), GABA(B2), and a tetramer of auxiliary subunits. This represents a substantial departure from current structural concepts for GPCRs.


Assuntos
Receptores de GABA-B/metabolismo , Animais , Clonagem Molecular , Antagonistas de Receptores de GABA-B , Humanos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Transporte Proteico
8.
Proc Natl Acad Sci U S A ; 107(31): 13924-9, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20643921

RESUMO

GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. GABAB receptors are abundant on dendritic spines, where they dampen postsynaptic excitability and inhibit Ca2+ influx through NMDA receptors when activated by spillover of GABA from neighboring GABAergic terminals. Here, we show that an excitatory signaling cascade enables spines to counteract this GABAB-mediated inhibition. We found that NMDA application to cultured hippocampal neurons promotes dynamin-dependent endocytosis of GABAB receptors. NMDA-dependent internalization of GABAB receptors requires activation of Ca2+/Calmodulin-dependent protein kinase II (CaMKII), which associates with GABAB receptors in vivo and phosphorylates serine 867 (S867) in the intracellular C terminus of the GABAB1 subunit. Blockade of either CaMKII or phosphorylation of S867 renders GABAB receptors refractory to NMDA-mediated internalization. Time-lapse two-photon imaging of organotypic hippocampal slices reveals that activation of NMDA receptors removes GABAB receptors within minutes from the surface of dendritic spines and shafts. NMDA-dependent S867 phosphorylation and internalization is predominantly detectable with the GABAB1b subunit isoform, which is the isoform that clusters with inhibitory effector K+ channels in the spines. Consistent with this, NMDA receptor activation in neurons impairs the ability of GABAB receptors to activate K+ channels. Thus, our data support that NMDA receptor activity endocytoses postsynaptic GABAB receptors through CaMKII-mediated phosphorylation of S867. This provides a means to spare NMDA receptors at individual glutamatergic synapses from reciprocal inhibition through GABAB receptors.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Receptores de GABA-B/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Células Cultivadas , Camundongos , Camundongos Knockout , Fosforilação , Ratos , Receptores de GABA-B/deficiência , Serina/genética , Serina/metabolismo
9.
Nature ; 465(7295): 231-5, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20400944

RESUMO

GABA(B) receptors are the G-protein-coupled receptors for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. They are expressed in almost all neurons of the brain, where they regulate synaptic transmission and signal propagation by controlling the activity of voltage-gated calcium (Ca(v)) and inward-rectifier potassium (K(ir)) channels. Molecular cloning revealed that functional GABA(B) receptors are formed by the heteromeric assembly of GABA(B1) with GABA(B2) subunits. However, cloned GABA(B(1,2)) receptors failed to reproduce the functional diversity observed with native GABA(B) receptors. Here we show by functional proteomics that GABA(B) receptors in the brain are high-molecular-mass complexes of GABA(B1), GABA(B2) and members of a subfamily of the KCTD (potassium channel tetramerization domain-containing) proteins. KCTD proteins 8, 12, 12b and 16 show distinct expression profiles in the brain and associate tightly with the carboxy terminus of GABA(B2) as tetramers. This co-assembly changes the properties of the GABA(B(1,2)) core receptor: the KCTD proteins increase agonist potency and markedly alter the G-protein signalling of the receptors by accelerating onset and promoting desensitization in a KCTD-subtype-specific manner. Taken together, our results establish the KCTD proteins as auxiliary subunits of GABA(B) receptors that determine the pharmacology and kinetics of the receptor response.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de GABA-B/química , Receptores de GABA-B/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Condutividade Elétrica , Agonistas dos Receptores de GABA-B , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Cinética , Camundongos , Neurônios/metabolismo , Oócitos/metabolismo , Potássio/metabolismo , Canais de Potássio/metabolismo , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Transdução de Sinais , Xenopus
10.
Genesis ; 47(9): 595-602, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19603512

RESUMO

GABA(B) receptors are the G-protein-coupled receptors for the neurotransmitter gamma-aminobutyric acid (GABA). Receptor subtypes are based on the subunit isoforms GABA(B1a) and GABA(B1b), which combine with GABA(B2) subunits to form heteromeric receptors. Here, we used a modified bacterial artificial chromosome (BAC) containing the GABA(B1) gene to generate transgenic mice expressing GABA(B1a) and GABA(B1b) subunits fused to the enhanced green fluorescence protein (eGFP). We demonstrate that the GABA(B1)-eGFP fusion proteins reproduce the cellular expression patterns of endogenous GABA(B1) proteins in the brain and in peripheral tissue. Crossing the GABA(B1)-eGFP BAC transgene into the GABA(B1) (-/-) background restores pre and postsynaptic GABA(B) functions, showing that the GABA(B1)-eGFP fusion proteins substitute for the lack of endogenous GABA(B1) proteins. Finally, we demonstrate that the GABA(B1)-eGFP fusion proteins replicate the temporal expression patterns of native GABA(B) receptors in cultured neurons. These transgenic mice therefore provide a validated tool for direct visualization of native GABA(B) receptors.


Assuntos
Modelos Animais , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Animais , Western Blotting , Cromossomos Artificiais Bacterianos , Primers do DNA/genética , Eletrofisiologia , Componentes do Gene , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência
11.
J Neurosci ; 29(5): 1414-23, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19193888

RESUMO

GABA(B) receptor subtypes are based on the subunit isoforms GABA(B1a) and GABA(B1b), which associate with GABA(B2) subunits to form pharmacologically indistinguishable GABA(B(1a,2)) and GABA(B(1b,2)) receptors. Studies with mice selectively expressing GABA(B1a) or GABA(B1b) subunits revealed that GABA(B(1a,2)) receptors are more abundant than GABA(B(1b,2)) receptors at glutamatergic terminals. Accordingly, it was found that GABA(B(1a,2)) receptors are more efficient than GABA(B(1b,2)) receptors in inhibiting glutamate release when maximally activated by exogenous application of the agonist baclofen. Here, we used a combination of genetic, ultrastructural and electrophysiological approaches to analyze to what extent GABA(B(1a,2)) and GABA(B(1b,2)) receptors inhibit glutamate release in response to physiological activation. We first show that at hippocampal mossy fiber (MF)-CA3 pyramidal neuron synapses more GABA(B1a) than GABA(B1b) protein is present at presynaptic sites, consistent with the findings at other glutamatergic synapses. In the presence of baclofen at concentrations >or=1 microm, both GABA(B(1a,2)) and GABA(B(1b,2)) receptors contribute to presynaptic inhibition of glutamate release. However, at lower concentrations of baclofen, selectively GABA(B(1a,2)) receptors contribute to presynaptic inhibition. Remarkably, exclusively GABA(B(1a,2)) receptors inhibit glutamate release in response to synaptically released GABA. Specifically, we demonstrate that selectively GABA(B(1a,2)) receptors mediate heterosynaptic depression of MF transmission, a physiological phenomenon involving transsynaptic inhibition of glutamate release via presynaptic GABA(B) receptors. Our data demonstrate that the difference in GABA(B1a) and GABA(B1b) protein levels at MF terminals is sufficient to produce a strictly GABA(B1a)-specific effect under physiological conditions. This consolidates that the differential subcellular localization of the GABA(B1a) and GABA(B1b) proteins is of regulatory relevance.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Receptores de GABA-B/fisiologia , Transmissão Sináptica/fisiologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fibras Musgosas Hipocampais/química , Isoformas de Proteínas/fisiologia
12.
J Neurosci ; 27(27): 7183-95, 2007 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-17611272

RESUMO

Agrin-deficient mice die at birth because of aberrant development of the neuromuscular junctions. Here, we examined the role of agrin at brain synapses. We show that agrin is associated with excitatory but not inhibitory synapses in the cerebral cortex. Most importantly, we examined the brains of agrin-deficient mice whose perinatal death was prevented by the selective expression of agrin in motor neurons. We find that the number of presynaptic and postsynaptic specializations is strongly reduced in the cortex of 5- to 7-week-old mice. Consistent with a reduction in the number of synapses, the frequency of miniature postsynaptic currents was greatly decreased. In accordance with the synaptic localization of agrin to excitatory synapses, changes in the frequency were only detected for excitatory but not inhibitory synapses. Moreover, we find that the muscle-specific receptor tyrosine kinase MuSK, which is known to be an essential component of agrin-induced signaling at the neuromuscular junction, is also localized to a subset of excitatory synapses. Finally, some components of the mitogen-activated protein (MAP) kinase pathway, which has been shown to be activated by agrin in cultured neurons, are deregulated in agrin-deficient mice. In summary, our results provide strong evidence that agrin plays an important role in the formation and/or the maintenance of excitatory synapses in the brain, and we provide evidence that this function involves MAP kinase signaling.


Assuntos
Agrina/deficiência , Córtex Cerebral/metabolismo , Sinapses/metabolismo , Fatores Etários , Agrina/genética , Agrina/fisiologia , Animais , Animais Recém-Nascidos , Córtex Cerebral/patologia , Galinhas , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Taxa de Sobrevida , Sinapses/patologia
13.
Neuroreport ; 18(10): 1025-9, 2007 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-17558289

RESUMO

Spinal-cord slices from neonatal rats were used to record lamina-X neurons using the patch-clamp technique under whole cell recording configuration. Lamina-X surrounds the central canal of the spinal cord and contains sympathetic preganglionic neurons of the central autonomic nucleus. Miniature inhibitory postsynaptic currents were recorded in the presence of tetrodotoxin and kynurenic acid to block action potential-dependent transmitter release and glutamatergic transmissions, respectively. We recorded mixed gamma-amino-n-butyric acid/glycine miniature synaptic currents suggesting that gamma-amino-n-butyric acid and glycine can be coreleased from the same single synaptic vesicles, and that this corelease can be detected by the postsynaptic cell. In addition, acetylcholine can induce the release of gamma-amino-n-butyric acid/glycine by acting presynaptically at nicotinic receptors located on the gamma-amino-n-butyric acid ergic/glycinergic terminals.


Assuntos
Glicina/metabolismo , Substância Gelatinosa/metabolismo , Ácido gama-Aminobutírico/metabolismo , Acetilcolina/farmacologia , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Glicina/farmacologia , Glicinérgicos/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Ácido Cinurênico/farmacologia , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Estricnina/farmacologia , Substância Gelatinosa/citologia , Tetrodotoxina/farmacologia , Ácido gama-Aminobutírico/farmacologia
14.
Neuropharmacology ; 51(1): 77-89, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16678861

RESUMO

Using patch clamp recordings from an in vitro spinal cord slice preparation of neonatal rats (9-15days old), we characterized the GABAergic synaptic transmission in sympathetic preganglionic neurones (SPN) of the central autonomic nucleus (CA) of lamina X. Local applications of isoguvacine (100microM), a selective agonist at GABA(A) receptors, induced in all cells tested a chloride current which was abolished by bicuculline, a competitive antagonist at GABA(A) receptors. In addition, 25% of the recorded cells displayed spontaneous tetrodotoxin-insensitive and bicuculline-sensitive chloride miniature inhibitory postsynaptic currents (mIPSCs). Acetylcholine (100microM) increased the frequency of GABAergic mIPSCs without affecting their amplitudes or their kinetic properties indicating a presynaptic site of action. The presynaptic effect of ACh was restricted to GABAergic neurones synapsing onto sympathetic preganglionic neurones. The facilitatory effect of ACh was abolished in the absence of external calcium or in the presence of 100microM cadmium added to the bath solution. Choline 10mM, an agonist at alpha7 nicotinic acetylcholine receptors (nAChRs) or muscarine (10microM), a muscarinic receptor agonist, did not reproduce the presynaptic effect of ACh. The presynaptic effect of ACh was blocked by 1microM of dihydro-beta-erythroidine (DHbetaE), an antagonist of non-alpha7 nAChRs but was insensitive to alpha7 nAChRs antagonists (strychnine, alpha-bungarotoxin and methyllycaconitine) or to the muscarinic receptor antagonist atropine (10microM). It was concluded that SPNs of the central autonomic nucleus displayed a functional GABAergic transmission which is facilitated by terminal non alpha7 nAChRs.


Assuntos
Animais Recém-Nascidos/fisiologia , Vias Autônomas/metabolismo , Receptores Nicotínicos/fisiologia , Medula Espinal/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia , Acetilcolina/farmacologia , Animais , Fibras Autônomas Pré-Ganglionares/efeitos dos fármacos , Fibras Autônomas Pré-Ganglionares/fisiologia , Vias Autônomas/citologia , Vias Autônomas/efeitos dos fármacos , Cálcio/fisiologia , Interpretação Estatística de Dados , Estimulação Elétrica , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Wistar , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/fisiologia , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos
15.
J Pharmacol Toxicol Methods ; 51(3): 243-52, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15862469

RESUMO

Lamina X surrounds the central canal of the spinal cord and is an important site for the convergence of somatic and visceral afferent inputs relaying nociceptive information. Lamina X contains sympathetic preganglionic neurons (SPN) in the so-called central autonomic nucleus which may participate to viscero-autonomic reflexes. Here, we describe a transversal slice preparation of postnatal rat thoracolumbar spinal cord which allows the detailed characterization of the morphology, electrophysiological properties, synaptic activities and receptor pharmacology of neurons surrounding the central canal. By means of the patch clamp technique, in its whole cell configuration, and by the use of various pharmacological tools, we show here that lamina X neurons of the central autonomic nucleus express functional alpha7 nicotinic receptors which are located postsynaptically on SPNs where they are involved in a fast cholinergic transmission. Thus, this in vitro preparation is useful to study the mechanisms and the pharmacology of viscero-autonomic reflexes.


Assuntos
Aconitina/análogos & derivados , Sistema Nervoso Autônomo/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Receptores Nicotínicos/efeitos dos fármacos , Medula Espinal/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Aconitina/farmacologia , Animais , Sistema Nervoso Autônomo/citologia , Sistema Nervoso Autônomo/efeitos dos fármacos , Estimulação Elétrica , Eletrofisiologia , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Antagonistas Nicotínicos/farmacologia , Sistema Nervoso Parassimpático/citologia , Sistema Nervoso Parassimpático/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7
16.
Eur J Pharmacol ; 471(3): 165-76, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12826235

RESUMO

Choline has been shown to be a specific agonist at alpha7 nicotinic acetylcholine receptors, which are the most Ca(2+) permeable of the ionotropic receptor channels. Whole-cell patch recording combined with the measurement of intracellular free Ca(2+) concentration ([Ca(2+)](i), using Indo1, in cultured rat superior cervical ganglion neurones demonstrated that application of choline induced a slowly desensitizing inward current and increased [Ca(2+)](i). The effect was dose dependent with an EC(50) of 1.6 mM and an n(H) of 1.19. The relationship between the elevation of [Ca(2+)](i) (Delta[Ca(2+)](i)) and charge transfer analysed under various recording conditions showed that the Delta[Ca(2+)](i) induced by choline resulted from an influx of Ca(2+) through nicotinic acetylcholine receptors. The effect of choline on the membrane current and Delta[Ca(2+)](i) was not affected by either short application or pretreatment with alpha-bungarotoxin (50 nM) and methyllycaconitine (1 nM), two alpha7 nicotinic receptors antagonists. These results indicate that activation of non-alpha7 nicotinic acetylcholine receptors by choline significantly increases the Ca(2+) concentration in rat superior cervical ganglion neurones.


Assuntos
Fibras Adrenérgicas/efeitos dos fármacos , Cálcio/metabolismo , Colina/farmacologia , Gânglio Cervical Superior/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Fibras Adrenérgicas/metabolismo , Animais , Células Cultivadas , Colina/metabolismo , Relação Dose-Resposta a Droga , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptores Nicotínicos/metabolismo , Gânglio Cervical Superior/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...