Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 16(797): eadf2173, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552769

RESUMO

G protein-coupled receptors engage both G proteins and ß-arrestins, and their coupling can be biased by ligands and mutations. Here, to resolve structural elements and mechanisms underlying effector coupling to the angiotensin II (AngII) type 1 receptor (AT1R), we combined alanine scanning mutagenesis of the entire sequence of the receptor with pharmacological profiling of Gαq and ß-arrestin engagement to mutant receptors and molecular dynamics simulations. We showed that Gαq coupling to AT1R involved a large number of residues spread across the receptor, whereas fewer structural regions of the receptor contributed to ß-arrestin coupling regulation. Residue stretches in transmembrane domain 4 conferred ß-arrestin bias and represented an important structural element in AT1R for functional selectivity. Furthermore, we identified allosteric small-molecule binding sites that were enclosed by communities of residues that produced biased signaling when mutated. Last, we showed that allosteric communication within AT1R emanating from the Gαq coupling site spread beyond the orthosteric AngII-binding site and across different regions of the receptor, including currently unresolved structural regions. Our findings reveal structural elements and mechanisms within AT1R that bias Gαq and ß-arrestin coupling and that could be harnessed to design biased receptors for research purposes and to develop allosteric modulators.


Assuntos
Receptor Tipo 1 de Angiotensina , Transdução de Sinais , beta-Arrestinas/genética , beta-Arrestinas/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , beta-Arrestina 1/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Angiotensina II/metabolismo
2.
J Biol Chem ; 298(9): 102294, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872018

RESUMO

Promiscuous G protein-coupled receptors (GPCRs) engage multiple Gα subtypes with different efficacies to propagate signals in cells. A mechanistic understanding of Gα selectivity by GPCRs is critical for therapeutic design, since signaling can be restrained by ligand-receptor complexes to preferentially engage specific G proteins. However, details of GPCR selectivity are unresolved. Here, we investigated cognate G protein selectivity using the prototypical promiscuous Gαq/11 and Gα12/13 coupling receptors, angiotensin II type I receptor (AT1R) and prostaglandin F2α receptor (FP), bioluminescence resonance energy transfer-based G protein and pathway-selective sensors, and G protein knockout cells. We determined that competition between G proteins for receptor binding occurred in a receptor- and G protein-specific manner for AT1R and FP but not for other receptors tested. In addition, we show that while Gα12/13 competes with Gαq/11 for AT1R coupling, the opposite occurs for FP, and Gαq-mediated signaling regulated G protein coupling only at AT1R. In cells, the functional modulation of biased ligands at FP and AT1R was contingent upon cognate Gα availability. The efficacy of AT1R-biased ligands, which poorly signal through Gαq/11, increased in the absence of Gα12/13. Finally, we show that a positive allosteric modulator of Gαq/11 signaling that also allosterically decreases FP-Gα12/13 coupling, lost its negative modulation in the absence of Gαq/11 coupling to FP. Together, our findings suggest that despite preferential binding of similar subsets of G proteins, GPCRs follow distinct selectivity rules, which may contribute to the regulation of ligand-mediated G protein bias of AT1R and FP.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Receptor Tipo 1 de Angiotensina , Receptores de Prostaglandina , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligantes , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Prostaglandina/metabolismo
3.
J Biol Chem ; 294(46): 17409-17420, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31530642

RESUMO

The angiotensin II (AngII) type 1 receptor (AT1R) is a member of the G protein-coupled receptor (GPCR) family and binds ß-arrestins (ß-arrs), which regulate AT1R signaling and trafficking. These processes can be biased by different ligands or mutations in the AGTR1 gene. As for many GPCRs, the exact details for AT1R-ß-arr interactions driven by AngII or ß-arr-biased ligands remain largely unknown. Here, we used the amber-suppression technology to site-specifically introduce the unnatural amino acid (UAA) p-azido-l-phenylalanine (azF) into the intracellular loops (ICLs) and the C-tail of AT1R. Our goal was to generate competent photoreactive receptors that can be cross-linked to ß-arrs in cells. We performed UV-mediated photolysis of 25 different azF-labeled AT1Rs to cross-link ß-arr1 to AngII-bound receptors, enabling us to map important contact sites in the C-tail and in the ICL2 and ICL3 of the receptor. The extent of AT1R-ß-arr1 cross-linking among azF-labeled receptors differed, revealing variability in ß-arr's contact mode with the different AT1R domains. Moreover, the signature of ligated AT1R-ß-arr complexes from a subset of azF-labeled receptors also differed between AngII and ß-arr-biased ligand stimulation of receptors and between azF-labeled AT1R bearing and that lacking a bias signaling mutation. These observations further implied distinct interaction modalities of the AT1R-ß-arr1 complex in biased signaling conditions. Our findings demonstrate that this photocross-linking approach is useful for understanding GPCR-ß-arr complexes in different activation states and could be extended to study other protein-protein interactions in cells.


Assuntos
Receptor Tipo 1 de Angiotensina/metabolismo , beta-Arrestina 1/metabolismo , Código Genético , Células HEK293 , Humanos , Luz , Ligação Proteica , Mapas de Interação de Proteínas , Receptor Tipo 1 de Angiotensina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...