Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 23(3): e2200472, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598869

RESUMO

Cell sheet harvesting offers a great potential for the development of new therapies for regenerative medicine. For cells to adhere onto surfaces, proliferate, and to be released on demand, thermoresponsive polymeric coatings are generally considered to be required. Herein, an alternative approach for the cell sheet harvesting and rapid release on demand is reported, circumventing the use of thermoresponsive materials. This approach is based on the end-group biofunctionalization of non-thermoresponsive and antifouling poly(2-hydroxyethyl methacrylate) (p(HEMA)) brushes with cell-adhesive peptide motifs. While the nonfunctionalized p(HEMA) surfaces are cell-repellant, ligation of cell-signaling ligand enables extensive attachment and proliferation of NIH 3T3 fibroblasts until the formation of a confluent cell layer. Remarkably, the formed cell sheets can be released from the surfaces by gentle rinsing with cell-culture medium. The release of the cells is found to be facilitated by low surface density of cell-adhesive peptides, as confirmed by X-ray photoelectron spectroscopy. Additionally, the developed system affords possibility for repeated cell seeding, proliferation, and release on previously used substrates without any additional pretreatment steps. This new approach represents an alternative to thermally triggered cell-sheet harvesting platforms, offering possibility of capture and proliferation of various rare cell lines via appropriate selection of the cell-adhesive ligand.


Assuntos
Peptídeos , Polímeros , Polímeros/química , Ligantes , Adesão Celular , Propriedades de Superfície
2.
Int J Pharm ; 613: 121392, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34933083

RESUMO

Inflammatory bowel disease (IBD) is a relapsing and remitting inflammatory disease affecting millions of people worldwide. The active phase of IBD is characterized by excessive formation of reactive oxygen species (ROS) in the intestinal mucosa, which further accelerates the inflammatory process. A feasible strategy for the IBD treatment is thus breaking the oxidation-inflammation vicious circle by scavenging excessive ROS with the use of a suitable antioxidant. Herein, we have developed a novel hydrogel system for oral administration utilizing sterically hindered amine-based redox polymer (SHARP) incorporating covalently bound antioxidant SHA groups. SHARP was prepared via free-radical polymerization by covalent crosslinking of 2-hydroxyethyl methacrylate (HEMA), poly(ethylene oxide) methyl ether methacrylate (PEGMA) and a SHA-based monomer, N-(2,2,6,6-tetramethyl-piperidin-4-yl)-methacrylamide. The SHARP hydrogel was resistant to hydrolysis and swelled considerably (∼90% water content) under the simulated gastrointestinal tract (GIT) conditions, and exhibited concentration-dependent antioxidant properties in vitro against different ROS. Further, the SHARP hydrogel was found to be non-genotoxic, non-cytotoxic, non-irritating, and non-absorbable from the gastrointestinal tract. Most importantly, SHARP hydrogel exhibited a statistically significant, dose-dependent therapeutic effect in the mice model of dextran sodium sulfate (DSS)-induced acute colitis. Altogether, the obtained results suggest that the SHARP hydrogel strategy holds a great promise with respect to IBD treatment.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Aminas , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Hidrogéis , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos , Oxirredução , Polímeros
3.
Macromol Biosci ; 20(4): e1900354, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32077245

RESUMO

To tailor cell-surface interactions, precise and controlled attachment of cell-adhesive motifs is required, while any background non-specific cell and protein adhesion has to be blocked effectively. Herein, a versatile and highly reproducible antifouling surface modification based on "clickable" groups and hierarchically structured diblock copolymer brushes for the controlled attachment of cells is reported. The polymer brush architecture combines an antifouling bottom block of poly(2-hydroxyethyl methacrylate) poly(HEMA) and an ultrathin azide-bearing top block, which can participate in well-established "click" reactions including the highly selective copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction under mild conditions. This straightforward approach allows the rapid conjugation of a cell-adhesive, alkyne-bearing cyclic RGD peptide motif, enabling subsequent specific attachment of NIH 3T3 fibroblasts, their extensive proliferation and confluent cell sheet formation after 48 h of incubation. The generally applicable strategy presented in this report can be employed for surface functionalization with diverse alkyne-bearing biological moieties via CuAAC or copper-free alkyne-azide cycloaddition protocols, making it a versatile functionalization approach and a promising tool for tissue engineering, biomaterial implant design, and other applications that require surfaces supporting highly specific cell attachment.


Assuntos
Alcinos/química , Anti-Infecciosos/síntese química , Azidas/química , Materiais Biocompatíveis/síntese química , Poli-Hidroxietil Metacrilato/química , Alicerces Teciduais , Alcinos/farmacologia , Animais , Anti-Infecciosos/farmacologia , Azidas/farmacologia , Materiais Biocompatíveis/farmacologia , Catálise , Proliferação de Células/efeitos dos fármacos , Química Click , Reação de Cicloadição , Camundongos , Células NIH 3T3 , Oligopeptídeos/química , Engenharia Tecidual
4.
Membranes (Basel) ; 9(8)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434248

RESUMO

Stable, cross-linked, liquid crystalline polymer (LCP) films for membrane separation applications have been fabricated from the mesogenic monomer 11-(4-cyanobiphenyl-4'-yloxy) undecyl methacrylate (CNBPh), non-mesogenic monomer 2-ethylhexyl acrylate (2-EHA), and cross-linker ethylene glycol dimethacrylate (EGDMA) using an in-situ free radical polymerization technique with UV initiation. The phase behavior of the LCP membranes was characterized using differential scanning calorimetry (DSC) and X-ray scattering, and indicated the formation of a nematic liquid crystalline (LC) phase above the glass transition temperature. The single gas transport behavior of CO2, CH4, propane, and propylene in the cross-linked LCP membranes was investigated for a range of temperatures in the LC mesophase and the isotropic phase. Solubility of the gases was dependent not only on the condensability in the LC mesophase, but also on favorable molecular interactions of penetrant gas molecules exhibiting a charge separation, such as CO2 and propylene, with the ordered polar mesogenic side chains of the LCP. Selectivities for various gas pairs generally decreased with increasing temperature and were discontinuous across the nematic-sotropic transition. Sorption behavior of CO2 and propylene exhibited a significant change due to a decrease in favorable intermolecular interactions in the disordered isotropic phase. Higher cross-link densities in the membrane generally led to decreased selectivity at low temperatures when the main chain motion was limited by the lack of mesogen mobility in the ordered nematic phase. However, at higher temperatures, increasing the cross-link density increased selectivity as the cross-links acted to limit chain mobility. Mixed gas permeation measurements for propylene and propane showed close agreement with the results of the single gas permeation experiments.

5.
ChemMedChem ; 12(24): 2066-2073, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29105372

RESUMO

Photodynamic therapy (PDT) has garnered immense attention as a minimally invasive clinical treatment modality for malignant cancers. However, its low penetration depth and photodamage of living tissues by UV and visible light, which activate a photosensitizer, limit the application of PDT. In this study, monodisperse NaYF4 :Yb3+ /Er3+ nanospheres 20 nm in diameter, that serve as near-infrared (NIR)-to-visible light converters and activators of a photosensitizer, were synthesized by high-temperature co-precipitation of lanthanide chlorides in a high-boiling organic solvent (octadec-1-ene). The nanoparticles were coated with a thin shell (≈3 nm) of homogenous silica via the hydrolysis and condensation of tetramethyl orthosilicate. The NaYF4 :Yb3+ /Er3+ @SiO2 particles were further functionalized by methacrylate-terminated groups via 3-(trimethoxysilyl)propyl methacrylate. To introduce a large number of reactive amino groups on the particle surface, methacrylate-terminated NaYF4 :Yb3+ /Er3+ @SiO2 nanospheres were modified with a branched polyethyleneimine (PEI) via Michael addition. Aluminum carboxyphthalocyanine (Al Pc-COOH) was then conjugated to NaYF4 :Yb3+ /Er3+ @SiO2 -PEI nanospheres via carbodiimide chemistry. The resulting NaYF4 :Yb3+ /Er3+ @SiO2 -PEI-Pc particles were finally modified with succinimidyl ester of poly(ethylene glycol) (PEG) in order to alleviate their future uptake by the reticuloendothelial system. Upon 980 nm irradiation, the intensive red emission of NaYF4 :Yb3+ /Er3+ @SiO2 -PEI-Pc-PEG nanoparticles completely vanished, indicating efficient energy transfer from the nanoparticles to Al Pc-COOH, which generates singlet oxygen (1 O2 ). Last but not least, NaYF4 :Yb3+ /Er3+ @SiO2 -PEI-Pc-PEG nanospheres were intratumorally administered into mammary carcinoma MDA-MB-231 growing subcutaneously in athymic nude mice. Extensive necrosis developed at the tumor site of all mice 24-48 h after irradiation by laser at 980 nm wavelength. The results demonstrate that the NaYF4 :Yb3+ /Er3+ @SiO2 -PEI-Pc-PEG nanospheres have great potential as a novel NIR-triggered PDT nanoplatform for deep-tissue cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Nanosferas/química , Neoplasias Experimentais/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Érbio/química , Érbio/farmacologia , Feminino , Fluoretos/química , Fluoretos/farmacologia , Humanos , Indóis/química , Indóis/farmacologia , Isoindóis , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/patologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Relação Estrutura-Atividade , Itérbio/química , Itérbio/farmacologia , Ítrio/química , Ítrio/farmacologia
6.
Macromol Biosci ; 15(5): 636-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25644402

RESUMO

In the current study, well-defined polymer brushes are shown as an effective surface modification to resist the adhesion of whole blood and its components. Poly[oligo(ethylene glycol)methylether methacrylate] (poly(MeOEGMA)), poly(hydroxyethyl methacrylate) (poly(HEMA)), poly[N-(2-hydroxypropyl) methacrylamide] (poly(HPMA)), and poly(carboxybetaine acrylamide) (poly(CBAA)) brushes were grown by surface initiated atom transfer radical polymerization (SI-ATRP) and subsequently characterized by Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), dynamic contact angle measurements, atomic force microscopy (AFM), and surface plasmon resonance (SPR) spectroscopy. All brushes decreased the fouling from blood plasma over 95% and prevented the adhesion of platelets, erythrocytes, and leukocytes as evidenced by SPR and SEM measurements.


Assuntos
Sangue/metabolismo , Teste de Materiais/instrumentação , Polímeros/química , Incrustação Biológica , Adesão Celular , Materiais Revestidos Biocompatíveis/química , Humanos , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Plasma Rico em Plaquetas , Polimerização , Polímeros/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água
7.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 7): o2066, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22807887

RESUMO

In the crystal structure of the title compound, C(19)H(18)Cl(2)O(6), mol-ecules are connected via weak C-H⋯π inter-actions into closely packed dimers.

8.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 6): o1698-9, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22719491

RESUMO

In the crystal structure of the title compound, C(19)H(18)Cl(2)N(2)O(4), N-H⋯O hydrogen bonds link the mol-ecules into infinite chains along the b axis. The structure also features weak C-H⋯O and C-H⋯Cl hydrogen bonds and C-H⋯π and (lone pair)⋯π inter-actions [Cl⋯centroid = 3.5871 (7) Å]. An intra-molecular N-H⋯O bond occurs.

9.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 3): o805-6, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22412673

RESUMO

In the title compound, C(25)H(22)Cl(2)N(2)O(4)·CH(3)OH, the macrocyclic mol-ecule adopts a slightly distorted C(2)-symmetric conformation. The macrocyclic mol-ecules are linked via N-H⋯O hydrogen bonds between the amide groups into chains extending along the [010] direction. The methanol mol-ecules bridge these chains via N-H⋯O and O-H⋯O hydrogen bonds with the formation of a two-dimensional polymeric structure parallel to (001). The methanol mol-ecule is disordered over two positions with the occupancy ratio of 9:1. The disorder of the solvent molecule is caused by weak intermolecular C-H⋯Cl hydrogen bonding.

10.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 6): o1427, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21754807

RESUMO

In the title compound, C(15)H(12)O(2), the dihedral angle between the aromatic ring systems is 16.67 (6)°. The methyl C atom is almost coplanar with its attached benzene ring [displacement = 0.020 (2) Å]. In the crystal, the mol-ecules are connected by weak C-H⋯O bonds and face-to-edge C-H⋯π inter-actions between the 2-meth-oxy-phenyl rings.

11.
Macromol Rapid Commun ; 32(13): 958-65, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21648007

RESUMO

Among the class of zwitterionic polymers poly(carboxybetaine)s (poly(CB)s) are unique, emerging as the only ultra-low fouling materials known allowing the preparation of biosensors, fouling resistant nanoparticles, and non-adhesive surfaces for bacteria. Poly(carboxybetaine methacrylate) and poly(carboxybetaine acrylamide) have been prepared via atom transfer radical polymerization (ATRP), however a polymerization with living characteristics has not been achieved yet. Herein, the first successful living/controlled reversible addition fragmentation transfer (RAFT) polymerization of (3-methacryloylamino-propyl)-(2-carboxy-ethyl)-dimethyl-ammonium (carboxybetaine methacrylamide) (CBMAA-3) in acetate buffer (pH 5.2) at 70 and 37 °C is reported. The polymerization afforded very high molecular weight polymers (determined by absolute size exclusion chromatography, close to 250,000 g·mol(-1) in less than 6 h) with low PDI (<1.3) at 70 °C. The polymerization was additionally carried out at 37 °C allowing to achieve yet lower PDIs (1.06 ≤ PDI ≤ 1.15) even at 90% conversion, demonstrating the suitability of the polymerization conditions for bioconjugate grafting. The living character of the polymerization is additionally evidenced by chain extending poly(CBMAA-3) at 70 and 37 °C. Block copolymerization from biologically relevant poly[N-(2-hydroxypropyl)methacrylamide] macroCTAs was additionally performed.


Assuntos
Acrilamidas/química , Acrilamidas/síntese química , Química Orgânica/métodos , Polímeros/síntese química , Peso Molecular , Polimerização , Polímeros/química , Temperatura
12.
Langmuir ; 22(8): 3633-9, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16584237

RESUMO

Silanization of macroporous glass microfiber filters with (3-aminopropyl)triethoxysilane (APTES) and subsequent binding of [2-(3,4-epoxycyclohexyl)ethyl]heptaisobutyloctasilsesquioxane (E-POSS) to the amine-terminated surface of microfibers was studied. Prior to the silanization, minute quantities of concentrated aqueous solutions of hydrochloric acid or ammonia were adsorbed in the filters while attachment of E-POSS molecules to APTES overlay was not specially catalyzed. Analysis of DRIFT, XPS, and 13C CP/MAS NMR spectra has shown that the formation of APTES overlay is affected differently by the surface-deposited acid or base. It was proved by XPS that microfibers with the adsorbed acid take up higher amounts of covalently attached APTES by 42% and, subsequently, of E-POSS by 65% than microfibers with the adsorbed ammonia. The molecular mechanics model calculations, which were made using silica as a template, have shown that approximately two-layered APTES coating can be built on the model surface if complete hydrolysis of ethoxy groups and vertical condensation of APTES species are assumed.


Assuntos
Vidro/química , Compostos de Organossilício/química , Silanos/química , Físico-Química/métodos , Análise de Fourier , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Propilaminas , Software , Espectrometria por Raios X/métodos , Espectrofotometria/métodos , Propriedades de Superfície
13.
J Chromatogr A ; 954(1-2): 115-26, 2002 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-12058896

RESUMO

Ni2+ complexes of the chelating nonporous and porous bead sorbents based on methacrylic esters crosslinked with ethylene dimethacrylate were used in isolation of the horseradish peroxidase-specific immunoglobulin IgG1 from the crude mouse ascitic fluid by immobilized metal ion affinity chromatography (IMAC). Iminodiacetic and aspartic acids were attached to porous poly(glycidyl methacrylate) beads differing in size, morphology and chemical composition. Ethylenediaminetriacetic acid and quinolin-8-ol chelating groups were attached mainly to the surface hydroxyl groups in nonporous poly(diethylene glycol methacrylate) beads through spacers. The latter sorbents exhibited better kinetic characteristics than the former but a very low IgG1 sorption capacity. In a single-step IMAC procedure, the best efficiency in the specific IgG1 purification was obtained with porous sorbents (recovery 92%, purity 73%). Differences in IMAC separations are discussed from the point of view of morphology of polymer beads as well as of the type and concentration of chelating ligands.


Assuntos
Imunoglobulina G/isolamento & purificação , Níquel/química , Ácidos Polimetacrílicos/química , Quelantes/química , Eletroforese em Gel de Poliacrilamida , Ésteres/química , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...