Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 602(12): 2823-2838, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748778

RESUMO

Skeletal muscle dysfunction is a major problem in critically ill patients suffering from sepsis. This condition is associated with mitochondrial dysfunction and increased autophagy in skeletal muscles. Autophagy is a proteolytic mechanism involved in eliminating dysfunctional cellular components, including mitochondria. The latter process, referred to as mitophagy, is essential for maintaining mitochondrial quality and skeletal muscle health. Recently, a fluorescent reporter system called mito-QC (i.e. mitochondrial quality control) was developed to specifically quantify mitophagy levels. In the present study, we used mito-QC transgenic mice and confocal microscopy to morphologically monitor mitophagy levels during sepsis. To induce sepsis, Mito-QC mice received Escherichia coli lipopolysaccharide (10 mg kg-1 i.p.) or phosphate-buffered saline and skeletal muscles (hindlimb and diaphragm) were excised 48 h later. In control groups, there was a negative correlation between the basal mitophagy level and overall muscle mitochondrial content. Sepsis increased general autophagy in both limb muscles and diaphragm but had no effect on mitophagy levels. Sepsis was associated with a downregulation of certain mitophagy receptors (Fundc1, Bcl2L13, Fkbp8 and Phbb2). The present study suggests that general autophagy and mitophagy can be dissociated from one another, and that the characteristic accumulation of damaged mitochondria in skeletal muscles under the condition of sepsis may reflect a failure of adequate compensatory mitophagy. KEY POINTS: There was a negative correlation between the basal level of skeletal muscle mitophagy and the mitochondrial content of individual muscles. Mitophagy levels in limb muscles and the diaphragm were unaffected by lipopolysaccharide (LPS)-induced sepsis. With the exception of BNIP3 in sepsis, LPS administration induced either no change or a downregulation of mitophagy receptors in skeletal muscles.


Assuntos
Camundongos Transgênicos , Mitofagia , Músculo Esquelético , Sepse , Animais , Sepse/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Masculino , Mitocôndrias Musculares/metabolismo , Autofagia/fisiologia
3.
J Agric Food Chem ; 69(46): 13754-13761, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34766764

RESUMO

Date palm fruit has been considered for centuries as an ancient nutritional constituent in the human diet. Recently, global trade in dates increased at an average that, simultaneously, will be accompanied by an increase in date palm byproducts. Supported by date phytochemicals and their health benefits, the aim of this work is to evaluate for the first time the presence of special metabolites of plant called phytoprostanes (PhytoPs) in five different varieties of the Phoenix dactylifera L. pulps and pits using a microLC-ESI-QTrap-MS/MS methodology. Results obtained showed the interest of using these matrices as potential sources of several PhytoPs (ent-16-B1-PhytoP; ent-9-L1-PhytoP; and epimers of ent-16-F1t-PhytoP and of 9-F1t-PhytoP). The variation in concentration between different varieties and different DPF parts was also evaluated. Results obtained will help to unravel the biological activities associated with DPF consumption that could be related to these bioactive metabolites.


Assuntos
Phoeniceae , Espectrometria de Massas em Tandem , Humanos , Compostos Fitoquímicos , Extratos Vegetais
4.
J Cell Mol Med ; 19(1): 175-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25339614

RESUMO

The mechanisms leading to skeletal limb muscle dysfunction in chronic obstructive pulmonary disease (COPD) have not been fully elucidated. Exhausted muscle regenerative capacity of satellite cells has been evocated, but the capacity of satellite cells to proliferate and differentiate properly remains unknown. Our objectives were to compare the characteristics of satellite cells derived from COPD patients and healthy individuals, in terms of proliferative and differentiation capacities, morphological phenotype and atrophy/hypertrophy signalling, and oxidative stress status. Therefore, we purified and cultivated satellite cells from progressively frozen vastus lateralis biopsies of eight COPD patients and eight healthy individuals. We examined proliferation parameters, differentiation capacities, myotube diameter, expression of atrophy/hypertrophy markers, oxidative stress damages, antioxidant enzyme expression and cell susceptibility to H2 O2 in cultured myoblasts and/or myotubes. Proliferation characteristics and commitment to terminal differentiation were similar in COPD patients and healthy individuals, despite impaired fusion capacities of COPD myotubes. Myotube diameter was smaller in COPD patients (P = 0.015), and was associated with a higher expression of myostatin (myoblasts: P = 0.083; myotubes: P = 0.050) and atrogin-1 (myoblasts: P = 0.050), and a decreased phospho-AKT/AKT ratio (myoblasts: P = 0.022). Protein carbonylation (myoblasts: P = 0.028; myotubes: P = 0.002) and lipid peroxidation (myotubes: P = 0.065) were higher in COPD cells, and COPD myoblasts were significantly more susceptible to oxidative stress. Thus, cultured satellite cells from COPD patients display characteristics of morphology, atrophic signalling and oxidative stress similar to those described in in vivo COPD skeletal limb muscles. We have therefore demonstrated that muscle alteration in COPD can be studied by classical in vitro cellular models.


Assuntos
Tamanho Celular , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/patologia , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/patologia , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/patologia , Estresse Oxidativo/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...