Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 23(4): 293-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23751796

RESUMO

The construction of a network of cell-to-cell contacts makes it possible to characterize the patterns and spatial organization of tissues. Such networks are highly dynamic, depending on the changes of the tissue architecture caused by cell division, death and migration. Local competitive and cooperative cell-to-cell interactions influence the choices cells make. We review the literature on quantitative data of epithelial tissue topology and present a dynamical network model that can be used to explore the evolutionary dynamics of a two dimensional tissue architecture with arbitrary cell-to-cell interactions. In particular, we show that various forms of experimentally observed types of interactions can be modelled using game theory. We discuss a model of cooperative and non-cooperative cell-to-cell communication that can capture the interplay between cellular competition and tissue dynamics. We conclude with an outlook on the possible uses of this approach in modelling tumorigenesis and tissue homeostasis.


Assuntos
Comunicação Celular/fisiologia , Transformação Celular Neoplásica , Homeostase/fisiologia , Transdução de Sinais , Animais , Células Epiteliais/fisiologia , Epitélio/patologia , Epitélio/fisiopatologia , Teoria dos Jogos , Humanos , Modelos Biológicos
2.
J Theor Biol ; 299: 126-38, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21983567

RESUMO

Social, biological and economic networks grow and decline with occasional fragmentation and re-formation, often explained in terms of external perturbations. We show that these phenomena can be a direct consequence of simple imitation and internal conflicts between 'cooperators' and 'defectors'. We employ a game-theoretic model of dynamic network formation where successful individuals are more likely to be imitated by newcomers who adopt their strategies and copy their social network. We find that, despite using the same mechanism, cooperators promote well-connected highly prosperous networks and defectors cause the network to fragment and lose its prosperity; defectors are unable to maintain the highly connected networks they invade. Once the network is fragmented it can be reconstructed by a new invasion of cooperators, leading to the cycle of formation and fragmentation seen, for example, in bacterial communities and socio-economic networks. In this endless struggle between cooperators and defectors we observe that cooperation leads to prosperity, but prosperity is associated with instability. Cooperation is prosperous when the network has frequent formation and fragmentation.


Assuntos
Comportamento Cooperativo , Teoria dos Jogos , Modelos Genéticos , Animais , Evolução Biológica , Simulação por Computador , Dinâmica Populacional
3.
BMC Syst Biol ; 5: 203, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22192879

RESUMO

BACKGROUND: Constructing predictive dynamic models of interacting signalling networks remains one of the great challenges facing systems biology. While detailed dynamical data exists about individual pathways, the task of combining such data without further lengthy experimentation is highly nontrivial. The communicating links between pathways, implicitly assumed to be unimportant and thus excluded, are precisely what become important in the larger system and must be reinstated. To maintain the delicate phase relationships between signals, signalling networks demand accurate dynamical parameters, but parameters optimised in isolation and under varying conditions are unlikely to remain optimal when combined. The computational burden of estimating parameters increases exponentially with increasing system size, so it is crucial to find precise and efficient ways of measuring the behaviour of systems, in order to re-use existing work. RESULTS: Motivated by the above, we present a new frequency domain-based systematic analysis technique that attempts to address the challenge of network assembly by defining a rigorous means to quantify the behaviour of stochastic systems. As our focus we construct a novel coupled oscillatory model of p53, NF-kB and the mammalian cell cycle, based on recent experimentally verified mathematical models. Informed by online databases of protein networks and interactions, we distilled their key elements into simplified models containing the most significant parts. Having coupled these systems, we constructed stochastic models for use in our frequency domain analysis. We used our new technique to investigate the crosstalk between the components of our model and measure the efficacy of certain network-based heuristic measures. CONCLUSIONS: We find that the interactions between the networks we study are highly complex and not intuitive: (i) points of maximum perturbation do not necessarily correspond to points of maximum proximity to influence; (ii) increased coupling strength does not necessarily increase perturbation; (iii) different perturbations do not necessarily sum and (iv) overall, susceptibility to perturbation is amplitude and frequency dependent and cannot easily be predicted by heuristic measures.Our methodology is particularly relevant for oscillatory systems, though not limited to these, and is most revealing when applied to the results of stochastic simulation. The technique is able to characterise precisely the distance in behaviour between different models, different systems and different parts within the same system. It can also measure the difference between different simulation algorithms used on the same system and can be used to inform the choice of dynamic parameters. By measuring crosstalk between subsystems it can also indicate mechanisms by which such systems may be controlled in experiments and therapeutics. We have thus found our technique of frequency domain analysis to be a valuable benchmark systems-biological tool.


Assuntos
Relógios Biológicos/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Biologia de Sistemas/métodos , Simulação por Computador , Processos Estocásticos
4.
Bioinformatics ; 23(20): 2800-2, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17855418

RESUMO

MOTIVATION: Compartments and membranes are the basis of cell topology and more than 30% of the human genome codes for membrane proteins. While it is possible to represent compartments and membrane proteins in a nominal way with many mathematical formalisms used in systems biology, few, if any, explicitly model the topology of the membranes themselves. Discrete stochastic simulation potentially offers the most accurate representation of cell dynamics. Since the details of every molecular interaction in a pathway are often not known, the relationship between chemical species in not necessarily best described at the lowest level, i.e. by mass action. Simulation is a form of computer-aided analysis, relying on human interpretation to derive meaning. To improve efficiency and gain meaning in an automatic way, it is necessary to have a formalism based on a model which has decidable properties. RESULTS: We present Cyto-Sim, a stochastic simulator of membrane-enclosed hierarchies of biochemical processes, where the membranes comprise an inner, outer and integral layer. The underlying model is based on formal language theory and has been shown to have decidable properties (Cavaliere and Sedwards, 2006), allowing formal analysis in addition to simulation. The simulator provides variable levels of abstraction via arbitrary chemical kinetics which link to ordinary differential equations. In addition to its compact native syntax, Cyto-Sim currently supports models described as Petri nets, can import all versions of SBML and can export SBML and MATLAB m-files. AVAILABILITY: Cyto-Sim is available free, either as an applet or a stand-alone Java program via the web page (http://www.cosbi.eu/Rpty_Soft_CytoSim.php). Other versions can be made available upon request.


Assuntos
Bioquímica/métodos , Membrana Celular/química , Proteínas de Membrana/metabolismo , Modelos Biológicos , Linguagens de Programação , Software , Membrana Celular/metabolismo , Simulação por Computador , Proteínas de Membrana/química , Modelos Químicos , Modelos Estatísticos , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...