Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chronobiol Int ; 29(8): 1048-61, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22971170

RESUMO

Earlier we reported that in a number of experiments pineal melatonin production in rats under constant laboratory conditions displayed seasonal rhythms but subsequently were not always able to confirm this. Since there was no indication under which conditions such rhythms may be present, we performed four consecutive identical experiments with untreated female Sprague-Dawley rats within the same animal room during 1997-2006. Nocturnal urine samples (19-23, 23-3, 3-7 h) were collected at monthly intervals over 494-658 d with 12 animals each in experiments I and II (1997-1999, 1999-2000), 30 animals in experiment III (2002-2004), and 15 in experiment IV (2005-2006). 6-Sulfatoxymelatonin (aMT6s) was measured by ELISA. The excreted aMT6s at each time interval as well as total nocturnal aMT6s-excretion (19-7 h) was submitted to standard statistical analyses as well as to a spectral chronobiological analysis to determine the period lengths of the components involved which was followed by processing with the single cosinor method. Seasonal rhythm components (circannual period length: 360 ± 60 d) were detected in experiment III (2002-2004) for the overall nocturnal excretion as well as for two sub-intervals (23-3 and 3-7 h) and in one night interval of experiment II (23-3 h). Multiple components with mostly short period lengths of around 100 d and some long ones of 500-650 d were found in the other experiments. Systematic MESOR and amplitude variations were observed during the experiments, being highest in experiment II (19-7 h, also 23-3 h and 3-7 h) and lowest in experiments I and IV. These results illustrate that seasonal melatonin rhythms are not a general phenomenon in female laboratory rats indicating an involvement of unknown environmental cues. As an extension of our earlier hypothesis regarding a seasonal Zeitgeber function of the horizontal intensity H of the geomagnetic field showing circannual variations, we assume further modulation by the 11-yrs' sunspot cycle which leads to geomagnetic disturbances and could facilitate seasonal aMT6s rhythmicity during specific years.


Assuntos
Melatonina/metabolismo , Fotoperíodo , Glândula Pineal/metabolismo , Estações do Ano , Animais , Ritmo Circadiano , Feminino , Melatonina/análogos & derivados , Melatonina/genética , Melatonina/urina , Ratos , Ratos Sprague-Dawley
2.
Neuro Endocrinol Lett ; 31(4): 457-73, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20802457

RESUMO

During 1997-2008 two long-term (I and II) and two life-long (III and IV) experiments were performed analyzing the effect of chronic exposure to a low-intensity GSM-like signal (900 MHz pulsed with 217 Hz, 100 µW/cm² average power flux density, 38-80 mW/kg mean specific absorption rate for whole body) on health and survival of unrestrained female Sprague-Dawley rats kept under identical conditions. Radiofrequency (RF)-exposure was started at 52-70 days of age and continued for 24 (I), 17 (II) and up to 36 and 37 months, respectively (III/IV). In the first two experiments (1997-2000) 12 exposed and 12 sham-exposed animals each were observed until they were maximally 770 or 580 days old. In experiment I no adverse health effects of chronic RF-exposure were detectable, neither by macroscopic nor detailed microscopic pathological examinations. Also in experiment II no apparent macroscopic pathological changes due to treatment were apparent. Median survival time could not be estimated since in none of the groups more than 50% of the animals had died. In the course of two complete survival experiments (2002-2005; 2005-2008) 30 RF- and 30 sham-exposed animals each were followed up until their natural end or when they became moribund and had to be euthanized. A synoptical data analysis was performed. Survival data of all four groups could be fitted well by the Weibull distribution. According to this analysis median survival was significantly shortened under RF-exposure in both experiments by 9.06% (95% CI 2.7 to 15.0%) (p=0.0064); i.e by 72 days in experiment III and 77 days in experiment IV as compared to the corresponding sham-treated animals (III: 799 days; IV: 852 days). Both groups of animals of experiment III showed reduced median survival times by 6.25% (95% CI -0.3 to 12.4%) (p=0.0604) compared to the corresponding groups of experiment IV (53 days: sham-exposed animals, 48 days: RF-exposed animals) which may be due to the fact that animals of experiment III were born in October and animals of experiment IV in May indicating that the month of birth affects life span. From the results of the last two experiments it has to be concluded that chronic exposure to a low-intensity GSM-like signal may exert negative health effects and shorten survival if treatment is applied sufficiently long and the observational period covers the full life span of the animals concerned. The current data show that survival of rats kept under controlled laboratory conditions varies within certain limits depending on the month of birth. In view of our previous observations regarding an inhibitory or no effect of RF-exposure on DMBA-induced mammary cancer during the 1997-2000 period, an additional modulatory influence on a year-to-year basis should be considered which might be related to changing solar activity during the the 11-years' sunspot cycle. These potentially complex influences of the natural environment modulating the effects of anthropogenic RF-signals on health and survival require a systematic continuation of such experiments throughout solar cycle 24 which started in 2009.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Longevidade/efeitos da radiação , Animais , Feminino , Estimativa de Kaplan-Meier , Ratos , Ratos Sprague-Dawley , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...