Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 14: 1227374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538255

RESUMO

Balance impairment is frequent in people with multiple sclerosis (pwMS) and affects risk of falls and quality of life. By using inertial measurement units (IMUs) on the Single Leg Stance Test (SLS) we aimed to discriminate healthy controls (HC) from pwMS and detect differences in balance endurance and quality. Thirdly, we wanted to test the correlation between instrumented SLS parameters and self-reported measures of gait and balance. Fifty-five pwMS with mild (EDSS<4) and moderate disability (EDSS≥4) and 20 HC performed the SLS with 3 IMUs placed on the feet and sacrum and filled the Twelve Item Multiple Sclerosis Walking Scale (MSWS-12) questionnaire. A linear mixed model was used to compare differences in the automated balance measures. Balance duration was significantly longer in HC compared to pwMS (p < 0.001) and between the two disability groups (p < 0.001). Instrumented measures identified that trunk stability (normalized mediolateral and antero-posterior center of mass stability) had the strongest association with disability (R2 marginal 0.30, p < 0.001) and correlated well with MSWS-12 (R = 0.650, p < 0.001). PwMS tended to overestimate own balance compared to measured balance duration. The use of both self-reported and objective assessments from IMUs can secure the follow-up of balance in pwMS.

2.
J Neurol ; 269(7): 3723-3734, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35166925

RESUMO

The aim of this work was to determine whether wearable inertial measurement units (IMUs) could detect gait improvements across different disability groups of people with Multiple Sclerosis (pwMS) by the six-minute walk test (6MWT) during a rehabilitation stay in a specialized rehabilitation center. Forty-six pwMS and 20 healthy controls (HC) were included in the study. They performed the 6MWT with two inertial measurement units (IMUs) placed on the feet. Thirty-two of the pwMS were retested at the end of the stay. PwMS were divided in a mild-disability and a moderate-disability group. The 6MWT was divided in six sections of 1 min each for technical analysis, and linear mixed models were used for statistical analyses. The comparison between the two disability groups and HC highlighted significant differences for each gait parameter (all p < 0.001). The crossing effect between the test-retest and the two disability groups showed greater improvement for the moderate-disability group. Finally, the gait parameter with the higher effect size, allowing the best differentiation between the disability groups, was the foot flat ratio (R2 = 0.53). Gait analyses from wearable sensors identified different evolutions of gait patterns during the 6MWT in pwMS with different physical disability. The measured effect of a short-time rehabilitation on gait with 6MWT was higher for pwMS with higher degree of disability. Using IMUs in a clinical setting allowed to identify significant changes in inter-stride gait patterns. Wearable sensors and key parameters have the potential as useful clinical tools for focusing on gait in pwMS.


Assuntos
Pessoas com Deficiência , Esclerose Múltipla , Marcha , Análise da Marcha , Humanos , Esclerose Múltipla/diagnóstico , Teste de Caminhada , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...