Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514373

RESUMO

In the injection molding process, weld line regions occur when a molten polymer flow front is first separated and then rejoined. The position, length, and angle of weld lines are dependent on the gate location, injection speed, injection pressure, mold temperature, and, especially, the direction and degree of the polymer melt velocity in the mold-filling process. However, the wall surface velocity of the thermoset melt in the mold-filling process is not zero, which is not found for thermoplastic injection molding. The main reason leading to this difference is the slip phenomenon in the filling phase between the thermoset melt and the wall surface, which is directly affected by the filler content. In this study, commercial thermoset phenolic injection molding compounds with different amounts of filler were employed to investigate not only the mechanism of weld line formation and development behind an obstacle in the injection molding process but also the flow disturbance of the thermoset melt in the spiral flow part. In addition, the effect of the wall slip phenomenon on the flow disturbance characterization and the mechanism of weld lines of selected thermoset materials was carefully considered in this research. Furthermore, the generated material data sheet with the optimal developed reactive viscosity and curing kinetics model was imported into a commercial injection molding tool to predict the weld line formation as well as the mold-filling behavior of selected thermoset injection molding compounds, such as the flow length, cavity pressure profile, temperature distribution, and viscosity variation. The results obtained in this paper provide important academic knowledge about the flow disturbance behavior as well as its influence on the mechanism of weld line formation in the process of thermoset injection molding. Furthermore, the simulated results were compared with the experimental results, which helps provide an overview of the ability of computer simulation in the field of the reactive injection molding process.

2.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904486

RESUMO

A completely opposite injection molding filling behavior of thermosets and thermoplastics by an effective and useful method developed by the authors was found. Specifically, for the thermoset injection molding, there is a strong slip between the thermoset melt and wall surface, which is not found for the injection molding of thermoplastic materials. In addition, the variables, such as the filler content, the mold temperature, the injection speed, and the surface roughness that could lead to or influence the slip phenomenon of thermoset injection molding compounds, were also investigated. Furthermore, microscopy was conducted to verify the correlation between the mold wall slip and fiber orientation. The results obtained in this paper open challenges in the field of the calculation, analysis, and simulation of mold filling behavior of highly glass fiber-reinforced thermoset resins in the injection molding process with consideration of wall slip boundary conditions.

3.
Polymers (Basel) ; 12(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854413

RESUMO

Thermoplastic Polyurethane (TPU) is a unique tailorable material due to the interactions of hard and soft segments within the block-copolymer chain. Therefore, various products can be created out of this material. A general trend towards a circular economy with regards to sustainability in combination with TPU being comparably expensive is of high interest to recycle production as well as post-consumer wastes. A systematic study investigating the property changes of TPU is provided, focusing on two major aspects. The first aspect focuses on characterizing the change of basic raw material properties through recycling. Gel permeation chromatography (GPC) and processing load during extrusion indicate a decrease in molar mass and consequently viscosity with an increasing number of recycling cycles. This leads to a change in morphology at lower molar mass, characterized by differential scanning calorimetry (DSC) and visualized by atomic force microscope (AFM). The change in molar mass and morphology with increasing number of recycling cycles has an impact on the material performance under tensile stress. The second aspect describes processing of the recycled TPU to nonwoven fabrics utilizing melt blowing, which are evaluated with respect to relevant mechanical properties and related to molecular characteristics. The molar mass turns out to be the governing factor regarding mechanical performance and processing conditions for melt blown products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...