Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 15(7): e1007915, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31329635

RESUMO

Expression of ABO and Lewis histo-blood group antigens by the gastrointestinal epithelium is governed by an α-1,2-fucosyltransferase enzyme encoded by the Fut2 gene. Alterations in mucin glycosylation have been associated with susceptibility to various bacterial and viral infections. Salmonella enterica serovar Typhimurium is a food-borne pathogen and a major cause of gastroenteritis. In order to determine the role of Fut2-dependent glycans in Salmonella-triggered intestinal inflammation, Fut2+/+ and Fut2-/- mice were orally infected with S. Typhimurium and bacterial colonization and intestinal inflammation were analyzed. Bacterial load in the intestine of Fut2-/- mice was significantly lower compared to Fut2+/+ mice. Analysis of histopathological changes revealed significantly lower levels of intestinal inflammation in Fut2-/- mice compared to Fut2+/+ mice and measurement of lipocalin-2 level in feces corroborated histopathological findings. Salmonella express fimbriae that assist in adherence of bacteria to host cells thereby facilitating their invasion. The std fimbrial operon of S. Typhimurium encodes the π-class Std fimbriae which bind terminal α(1,2)-fucose residues. An isogenic mutant of S. Typhimurium lacking Std fimbriae colonized Fut2+/+ and Fut2-/- mice to similar levels and resulted in similar intestinal inflammation. In vitro adhesion assays revealed that bacteria possessing Std fimbriae adhered significantly more to fucosylated cell lines or primary epithelial cells in comparison to cells lacking α(1,2)-fucose. Overall, these results indicate that Salmonella-triggered intestinal inflammation and colonization are dependent on Std-fucose interaction.


Assuntos
Fímbrias Bacterianas/metabolismo , Fucose/metabolismo , Salmonella typhimurium/patogenicidade , Animais , Aderência Bacteriana , Colite/etiologia , Colite/metabolismo , Colite/microbiologia , Feminino , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Fucosiltransferases/deficiência , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Óperon , Salmonelose Animal/etiologia , Salmonelose Animal/metabolismo , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Galactosídeo 2-alfa-L-Fucosiltransferase
2.
Front Microbiol ; 9: 1483, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30022975

RESUMO

Toxin-producing strains of Clostridioides difficile and Clostridium perfringens cause infections of the gastrointestinal tract in humans and ruminants, with the toxins being major virulence factors, essential for the infection, and responsible for the onset of severe symptoms. C. difficile toxin A (TcdA) and toxin B (TcdB), and the large cytotoxin (TpeL) from C. perfringens are single chain bacterial protein toxins with an AB-like toxin structure. The C-terminal delivery domain mediates cell entry of the N-terminal glycosyltransferase domain by receptor-mediated endocytosis. Several cell surface proteins have been proposed to serve as toxin receptors, including chondroitin-sulfate proteoglycan 4 (CSPG4), poliovirus receptor-like 3 (PVRL3), and frizzled-1/2/7 (FZD1/2/7) for TcdB and LDL-receptor-related protein-1 (LRP1) for TpeL. The expression of the TcdB receptors was investigated in human intestinal organoids (HIOs) and in cultured cell lines. HIOs from four human donors exhibited a comparable profile of receptor expression, with PVRL3, LRP1, and FZD7 being expressed and CSPG4 and FZD2 not being expressed. In human epithelial Caco-2 cells and HT29 cells as well as in immortalized murine fibroblasts, either receptor FZD2/7, CSPG4, PVRL3, and LRP1 was expressed. The question whether the toxins take advantage of the normal turnover of their receptors (i.e., constitutive endocytosis and recycling) from the cell surface or whether the toxins activity induce the internalization of their receptors has not yet been addressed. For the analysis of receptor internalization, temperature-induced uptake of biotinylated toxin receptors into immortalized mouse embryonic fibroblasts (MEFs) and Caco-2 cells was exploited. Solely LRP1 exhibited constitutive endocytosis from the plasma membrane to the endosome, which might be abused by TpeL (and possibly TcdB as well) for cell entry. Furthermore, internalization of CSPG4, PVRL3, FZD2, and FZD7 was observed neither in MEFs nor in Caco-2 cells. FZD2/7, CSPG4, and PVRL3 did thus exhibit no constitutive recycling. The presence of TcdB and the p38 activation induced by anisomycin were not able to induce or enhance CSPG4 or PVRL3 uptake in MEFs. In conclusion, FZD2/7, CSPG4, and PVRL3 seem to serve as cell surface binding receptors rather than internalizing receptors of TcdB.

3.
Traffic ; 14(3): 321-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23231467

RESUMO

Here we describe a novel approach for the isolation and biochemical characterization of pathogen-containing compartments from primary cells: We developed a lipid-based procedure to magnetically label the surface of bacteria and visualized the label by scanning and transmission electron microscopy (SEM, TEM). We performed infection experiments with magnetically labeled Mycobacterium avium, M. tuberculosis and Listeria monocytogenes and isolated magnetic bacteria-containing phagosomes using a strong magnetic field in a novel free-flow system. Magnetic labeling of M. tuberculosis did not affect the virulence characteristics of the bacteria during infection experiments addressing host cell activation, phagosome maturation delay and replication in macrophages in vitro. Biochemical analyses of the magnetic phagosome-containing fractions provided evidence of an enhanced presence of bacterial antigens and a differential distribution of proteins involved in the endocytic pathway over time as well as cytokine-dependent changes in the phagosomal protein composition. The newly developed method represents a useful approach to characterize and compare pathogen-containing compartments, in order to identify microbial and host cell targets for novel anti-infective strategies.


Assuntos
Imãs , Fagossomos/microbiologia , Coloração e Rotulagem/métodos , Humanos , Lipídeos/química , Listeria monocytogenes/isolamento & purificação , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Imãs/química , Microscopia Eletrônica de Transmissão e Varredura , Microscopia de Fluorescência , Mycobacterium/isolamento & purificação , Fagossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...