Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(2): e13101, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793957

RESUMO

Translation is a central step in gene expression, however its quantitative and time-resolved regulation is poorly understood. We developed a discrete, stochastic model for protein translation in S. cerevisiae in a whole-transcriptome, single-cell context. A "base case" scenario representing an average cell highlights translation initiation rates as the main co-translational regulatory parameters. Codon usage bias emerges as a secondary regulatory mechanism through ribosome stalling. Demand for anticodons with low abundancy is shown to cause above-average ribosome dwelling times. Codon usage bias correlates strongly both with protein synthesis rates and elongation rates. Applying the model to a time-resolved transcriptome estimated by combining data from FISH and RNA-Seq experiments, it could be shown that increased total transcript abundance during the cell cycle decreases translation efficiency at single transcript level. Translation efficiency grouped by gene function shows highest values for ribosomal and glycolytic genes. Ribosomal proteins peak in S phase while glycolytic proteins rank highest in later cell cycle phases.

2.
Adv Sci (Weinh) ; 9(23): e2200088, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35607290

RESUMO

Reaching population immunity against COVID-19 is proving difficult even in countries with high vaccination levels. Thus, it is critical to identify limits of control and effective measures against future outbreaks. The effects of nonpharmaceutical interventions (NPIs) and vaccination strategies are analyzed with a detailed community-specific agent-based model (ABM). The authors demonstrate that the threshold for population immunity is not a unique number, but depends on the vaccination strategy. Prioritizing highly interactive people diminishes the risk for an infection wave, while prioritizing the elderly minimizes fatalities when vaccinations are low. Control over COVID-19 outbreaks requires adaptive combination of NPIs and targeted vaccination, exemplified for Germany for January-September 2021. Bimodality emerges from the heterogeneity and stochasticity of community-specific human-human interactions and infection networks, which can render the effects of limited NPIs uncertain. The authors' simulation platform can process and analyze dynamic COVID-19 epidemiological situations in diverse communities worldwide to predict pathways to population immunity even with limited vaccination.


Assuntos
COVID-19 , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Simulação por Computador , Surtos de Doenças/prevenção & controle , Alemanha/epidemiologia , Humanos , Vacinação
3.
Curr Genomics ; 22(4): 239-243, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35273456

RESUMO

According to the WHO, cancer is the second most common cause of death worldwide. The social and economic damage caused by cancer is high and rising. In Europe, the annual direct medical expenses alone amount to more than €129 billion. This results in an urgent need for new and sustainable therapeutics, which has currently not been met by the pharmaceutical industry; only 3.4% of cancer drugs entering Phase I clinical trials get to market. Phosphorylation sites are parts of the core machinery of kinase signaling networks, which are known to be dysfunctional in all types of cancer. Indeed, kinases are the second most common drug target yet. However, these inhibitors block all functions of a protein, and they commonly lead to the development of resistance and increased toxicity. To facilitate global and mechanistic modeling of cancer and clinically relevant cell signaling networks, the community will have to develop sophisticated data-driven deep-learning and mechanistic computational models that generate in silico probabilistic predictions of molecular signaling network rearrangements causally implicated in cancer.

4.
NPJ Syst Biol Appl ; 4: 17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844922

RESUMO

Gene expression is a stochastic process and its appropriate regulation is critical for cell cycle progression. Cellular stress response necessitates expression reprogramming and cell cycle arrest. While previous studies are mostly based on bulk experiments influenced by synchronization effects or lack temporal distribution, time-resolved methods on single cells are needed to understand eukaryotic cell cycle in context of noisy gene expression and external perturbations. Using smFISH, microscopy and morphological markers, we monitored mRNA abundances over cell cycle phases and calculated transcriptional noise for SIC1, CLN2, and CLB5, the main G1/S transition regulators in budding yeast. We employed mathematical modeling for in silico synchronization and for derivation of time-courses from single cell data. This approach disclosed detailed quantitative insights into transcriptional regulation with and without stress, not available from bulk experiments before. First, besides the main peak in G1 we found an upshift of CLN2 and CLB5 expression in late mitosis. Second, all three genes showed basal expression throughout cell cycle enlightening that transcription is not divided in on and off but rather in high and low phases. Finally, exposing cells to osmotic stress revealed different periods of transcriptional inhibition for CLN2 and CLB5 and the impact of stress on cell cycle phase duration. Combining experimental and computational approaches allowed us to precisely assess cell cycle progression timing, as well as gene expression dynamics.

5.
Structure ; 24(11): 1972-1983, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773687

RESUMO

The spliceosomal B complex-specific protein Prp38 forms a complex with the intrinsically unstructured proteins MFAP1 and Snu23. Our binding and crystal structure analyses show that MFAP1 and Snu23 contact Prp38 via ER/K motif-stabilized single α helices, which have previously been recognized only as rigid connectors or force springs between protein domains. A variant of the Prp38-binding single α helix of MFAP1, in which ER/K motifs not involved in Prp38 binding were mutated, was less α-helical in isolation and showed a reduced Prp38 affinity, with opposing tendencies in interaction enthalpy and entropy. Our results indicate that the strengths of single α helix-based interactions can be tuned by the degree of helix stabilization in the unbound state. MFAP1, Snu23, and several other spliceosomal proteins contain multiple regions that likely form single α helices via which they might tether several binding partners and act as intermittent scaffolds that facilitate remodeling steps during assembly of an active spliceosome.


Assuntos
Proteínas Contráteis/química , Proteínas da Matriz Extracelular/química , Fatores de Processamento de RNA/química , Ribonucleoproteínas Nucleares Pequenas/química , Spliceossomos/química , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Termodinâmica
6.
RNA ; 22(2): 265-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26673105

RESUMO

Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein-protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein-protein interaction platform that might organize the relative positioning of other proteins during splicing.


Assuntos
Subunidades Proteicas/química , Precursores de RNA/química , Splicing de RNA , RNA Mensageiro/química , Proteínas de Saccharomyces cerevisiae/química , Spliceossomos/química , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Spliceossomos/genética , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...