Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 139: 106673, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37354660

RESUMO

Chemically engineered PLGA nanospheres are one of the emerging technologies for treating neurodegenerative disorders by inhibiting Catechol-O-methyltransferase (COMT). PLGA-MATPM nanospheres were chemically synthesized using PLGA and MATPM (N-allyl-N-(3-(m-tolyloxy)propyl) methioninate). The tailored PLGA nanospheres induce dose-dependent COMT inhibition in competitive kinetic mode. The interactions between COMT and PLGA nanosphere are explained by spectroscopic and molecular dynamics analysis. PLGA-MATPM NPs suppressed the growth of neuroblastoma cells due to the neurodegenerative toxicity of MPTP induction, demonstrating its potency as a cure for neurological disorders. PLGA-MATPM NPs cross the blood-brain barrier more effectively than those in the blood. Furthermore, PLGA nanospheres showed the most neurodegenerative recovery against MPTP-induced C57BL/6 mice. Using magnetic resonance imaging (MRI), it was validated for quality images of cerebral blood flow (CBF).


Assuntos
Catecol O-Metiltransferase , Nanosferas , Camundongos , Animais , Catecol O-Metiltransferase/metabolismo , Nanosferas/química , Camundongos Endogâmicos C57BL , Inibidores de Catecol O-Metiltransferase/farmacologia , Metilação
2.
Waste Manag ; 116: 58-65, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32784122

RESUMO

In the current scenario, used paper cups are disposed of without any proper treatment, thereby damaging the environment. Hence, the vermicomposting technique is preferred for managing these wastes. The ability of bacterial strains on cellulase enzyme (Endoglucanase, exoglucanase and ß-glucosidase) production at altered pH and temperatures were focused in this study. Among nine bacterial strains Acinetobacter baumannii was found to have high enzyme activity. HPLC analysis confirms that about 45% of cellulose degradation occurred due to the action of bacterial consortia at 37 °C with pH 7. The overall period required for degradation takes only three months with the help of bacterial consortia while comparing to our previous study, which takes six months. The insilico study on three cellulose-degrading enzymes sequence were retrieved from NCBI, and analysed for multiple sequence alignment and phylogenetic tree construction. From the analysis, the endoglucanase SVK46152 (Acinetobacter baumannii) sequence got docked with cellopentaose with a high score value -11.07. Thereby we confirm that organism Acinetobacter baumannii was effective in paper cup degradation.


Assuntos
Celulase , Bactérias , Celulose , Filogenia , beta-Glucosidase
3.
Prep Biochem Biotechnol ; 44(6): 586-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24499363

RESUMO

Nitrate NO(3)(-) contamination of groundwater resources is a serious problem. Such contamination in drinking water is regulated by environmental agencies around the world since at higher concentrations it can cause several health problems in infants. The aim of the present study was to identify the efficiency of the bacterial species isolated from nitrate-contaminated water and soil samples collected from Erode, Salem, Dharmapuri, and Krishnagiri districts of Tamilnadu, India. There are 74 morphologically different bacterial species were isolated and evaluated by a dissimilatory and assimilatory nitrate reduction test. Among the isolates, DW-27, DS-29, DS-31, DS-45, DS-46, and DS-47 were found to be potential dissimilatory and EW-6, ES-15, DS-39, DS-41, DS-48, DS-55, and SW-59 were potential assimilatory nitrate reducers. The results of bacterial analysis revealed that the isolated nitrate-reducing bacteria belonged to the genera Bacillus (64%) and Corynebacterium (22%), family Enterobacteriaceae (11%), and genus Alcaligenes (3%). This observation has led to the conclusion that these bacterial species showed efficiency of nitrate removal.


Assuntos
Desnitrificação/fisiologia , Poluentes Ambientais/metabolismo , Nitratos/metabolismo , Microbiologia do Solo , Microbiologia da Água , Alcaligenes/isolamento & purificação , Alcaligenes/metabolismo , Bacillus/isolamento & purificação , Bacillus/metabolismo , Biodegradação Ambiental , Corynebacterium/isolamento & purificação , Corynebacterium/metabolismo , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/metabolismo , Poluentes Ambientais/química , Água Subterrânea/química , Nitratos/química , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...