Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(17): 2862-2873, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087003

RESUMO

Gordon Holmes syndrome (GDHS) is an adult-onset neurodegenerative disorder characterized by ataxia and hypogonadotropic hypogonadism. GDHS is caused by mutations in the gene encoding the RING-between-RING (RBR)-type ubiquitin ligase RNF216, also known as TRIAD3. The molecular pathology of GDHS is not understood, although RNF216 has been reported to modify several substrates with K48-linked ubiquitin chains, thereby targeting them for proteasomal degradation. We identified RNF216 in a bioinformatical screen for putative SUMO-targeted ubiquitin ligases and confirmed that a cluster of predicted SUMO-interaction motifs (SIMs) indeed recognizes SUMO2 chains without targeting them for ubiquitination. Surprisingly, purified RNF216 turned out to be a highly active ubiquitin ligase that exclusively forms K63-linked ubiquitin chains, suggesting that the previously reported increase of K48-linked chains after RNF216 overexpression is an indirect effect. The linkage-determining region of RNF216 was mapped to a narrow window encompassing the last two Zn-fingers of the RBR triad, including a short C-terminal extension. Neither the SIMs nor a newly discovered ubiquitin-binding domain in the central portion of RNF216 contributes to chain specificity. Both missense mutations reported in GDHS patients completely abrogate the ubiquitin ligase activity. For the R660C mutation, ligase activity could be restored by using a chemical ubiquitin loading protocol that circumvents the requirement for ubiquitin-conjugating (E2) enzymes. This result suggests Arg-660 to be required for the ubiquitin transfer from the E2 to the catalytic cysteine. Our findings necessitate a re-evaluation of the previously assumed degradative role of RNF216 and rather argue for a non-degradative K63 ubiquitination, potentially acting on SUMOylated substrates.


Assuntos
Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/genética , Hipogonadismo/metabolismo , Mutação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Ativação Enzimática , Predisposição Genética para Doença , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Fosforilação , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitinação
2.
PLoS One ; 8(3): e59565, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555709

RESUMO

In 2007, a novel, putatively photosynthetic picoeukaryotic lineage, the 'picobiliphytes', with no known close eukaryotic relatives, was reported from 18S environmental clone library sequences and fluorescence in situ hybridization. Although single cell genomics later showed these organisms to be heterotrophic rather than photosynthetic, until now this apparently widespread group of pico-(or nano-)eukaryotes has remained uncultured and the organisms could not be formally recognized. Here, we describe Picomonas judraskeda gen. et sp. nov., from marine coastal surface waters, which has a 'picobiliphyte' 18S rDNA signature. Using vital mitochondrial staining and cell sorting by flow cytometry, a single cell-derived culture was established. The cells are biflagellate, 2.5-3.8×2-2.5 µm in size, lack plastids and display a novel stereotypic cycle of cell motility (described as the "jump, drag, and skedaddle"-cycle). They consist of two hemispherical parts separated by a deep cleft, an anterior part that contains all major cell organelles including the flagellar apparatus, and a posterior part housing vacuoles/vesicles and the feeding apparatus, both parts separated by a large vacuolar cisterna. From serial section analyses of cells, fixed at putative stages of the feeding cycle, it is concluded that cells are not bacterivorous, but feed on small marine colloids of less than 150 nm diameter by fluid-phase, bulk flow endocytosis. Based on the novel features of cell motility, ultrastructure and feeding, and their isolated phylogenetic position, we establish a new phylum, Picozoa, for Picomonas judraskeda, representing an apparently widespread and ecologically important group of heterotrophic picoeukaryotes, formerly known as 'picobiliphytes'.


Assuntos
Eucariotos/isolamento & purificação , Movimento Celular , Eucariotos/citologia , Eucariotos/genética , Eucariotos/ultraestrutura , Citometria de Fluxo , Microscopia Eletrônica , Mitocôndrias/metabolismo , Filogenia , RNA Ribossômico 18S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...